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Abstract Union-find algorithms form the basis of manag-
ing sets of equivalent labels within most connected compo-
nents labelling algorithms. The new class of single-pass con-
nected components analysis (CCA) algorithms (where a fea-
ture vector of each component is extracted during process-
ing) are analysed and compared within this context. Such
algorithms have been developed for stream processing, us-
ing customised hardware architectures. Many of these use
an improved union-find algorithm requiring only a single
lookup for its find operation. This paper analyses this opti-
misation, and formally proves that the resulting single look-
up connected components algorithm (SLCCA) associates
each pixel with its correct component when extracting the
components’ feature vectors. Analysis of the algorithm led
to a new double lookup algorithm that reduces the total num-
ber of memory accesses, and is a step towards unifying pixel
based methods and run based methods. State-of-the-art CCA
algorithms are compared in terms of the number of memory
accesses, which is a limiting factor for hardware based ac-
celeration, with key implementation trade-offs identified be-
tween hardware resources and worst case processing speed.
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1 Introduction

Connected components analysis (CCA) is a common step
in many image processing applications, extracting features
such as area or size of arbitrary shaped objects in a binary
image. It is based on connected components labelling
(CCL), which creates a labelled image of the same dimen-
sions as the original image where all pixels of each con-
nected component are assigned a unique label. Most recent
CCL algorithms carry out three phases: scan, analyse and
relabelling [34, 8,35, 19, 13]. In the scan phase, a provisional
label is assigned to each object pixel. If more than one label
is assigned to a single connected component, this relation-
ship is detected and memorised. In the analysis phase one
label is chosen to represent each connected component in
the labelled image. Most state-of-the-art connected compo-
nents labelling algorithms perform this analysis using some
form of union-find data structure and algorithm [35,12,9],
although they may not always explicitly mention it by this
name [7]. The relabelling phase requires a second pass
through the image, and replaces each provisional label by
its representative label. As a result, all pixels of a connected
component are assigned the same label.

In connected components analysis, a feature vector is
derived from each connected component. Since the set of
feature vectors is of primary interest, a labelled image is es-
sentially only an auxiliary data structure. If features are ex-
tracted during the scan phase then relabelling is redundant
and the three processing phases can, therefore, be reduced to
only two: scan and analyse. Analysing the image while it is
scanned resolves data associations on-the-fly [2] and this is
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the principle behind the recently developed class of single-
pass CCA algorithms ([1,32]). Such CCA algorithms allow
stream processing of the input image and reduce memory
requirements [18] since only the labels of the current and
the previous row are required for further processing. Previ-
ous single-pass CCL algorithms are based on contour trac-
ing [5].

Some CCA and CCL algorithms are adapted and op-
timised to the instruction sets or memory architectures of
the hardware device they are used on [3,11,19]. Many sin-
gle pass algorithms are motivated by the idea of creating
a CCA algorithm from which an efficient customised high-
performance architecture can be derived by basic processing
and storage elements [18]. This is realised by:

— Single-pass processing

For CCA, a labelled image does not need to be stored, there-
fore, there is no need to maintain, optimise or accelerate the
labelled image data structure or its memory accesses when
it is processed in only a single pass.

— Linear processing time

A necessary condition for real-time processing is that the
algorithm complexity is linear in the number of pixels in the
image because the binary input image is either read from a
memory or received as a pixel stream.

— One lookup per pixel to determine the representative la-
bel

In many CCL and CCA algorithms, the union-find data
structures which represent equivalence relations are mapped
to arrays [8,35,13,12,28]. Their union-find algorithms re-
quire several lookups per pixel to identify which connected
component a pixel is associated with. Most single-pass CCA
algorithms reduce this to one lookup per pixel implicitly
using a novel, context-based, optimisation of the classical
union-find algorithm. The single lookup property is espe-
cially important for a dedicated hardware architecture be-
cause it enables the system to process the pixel stream at the
pixel clock rate.
The contributions of this paper are:

— State-of-the-art CCL and CCA algorithms are analysed
in terms of the union-find algorithm (Section 2). In par-
ticular, single-pass algorithms are placed within this
context, and the corresponding optimised union-find al-
gorithm is identified and analysed.

— Section 3 presents a full algorithmic description of the
state-of-the-art Single Lookup CCA SLCCA hardware ar-
chitecture from [18].

— A proof of the correctness of the SLCCA algorithm is
provided (Section 4). This proves that the single lookup
of the optimised union-find algorithm is sufficient for
CCA. This is the first formal proof of single-pass CCA

algorithms; prior outlines of proof [1] are both informal
and incomplete.

— From this, a novel optimised Double Lookup CCA algo-
rithm (DLCCA) is derived in Section 5, with fewer total
lookups required.

— Pixel-based and run-based algorithms are unified by
proving that it is only necessary to find the equivalent
label of the first pixel in a run when propagating labels
from one row to the next, enabling run length encoding
to be used for storing the label image.

— The trade-offs between different CCA algorithms are
analysed in terms of memory operations and the required
resources in Section 6.

2 Union-find in CCL and CCA algorithms

First, what is meant by a connected component is formally
defined. The binary input image / identifies object and back-
ground pixels on a discrete grid in Cartesian space of width
W and height H. Let imagePos be the set of all positions in
I,

imagePos ={(i,j):0<i<W,0<j<H,i,jeN}. (1)
Pixels outside the image are assumed to be background.

0, Vp ¢ imagePos,
Ip] =41,
0, if p=(i,J) is not an object pixel.

if p = (i, j) is an object pixel, (@)

Two pixels p; and p,, are adjacent if

lp1—p2| =1 3)

Adjacent object pixels are connected. Here, 8-connectivity
is assumed (i.e. using || ||,.,), although the same techniques
can be applied for 4-connectivity (using || ||, ).

Definition 1 Connectedness: Two object pixels in I, p; and
P2, belong to the same connected component if there is a
path of connected object pixels in / between p; and p».

This is denoted as p; <— p», which can be defined recur-
sively as:

{I[pl]d[pz]:mnpl “ml=l o “

3p;  I[pi]=1 A p1 <— pi A\ pi <— pa.

The base case holds true if p; and p,, are adjacent object
pixels of /. The recursive case holds true if there is an object
pixel p; with a connected path to both p; and p;.

Definition 2 Connected component: A maximal set of
mutually connected object pixels in [ is called a connected
component. Each connected component represents a sepa-
rate image object in /.
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2.1 Union-find

Problems which require the manipulation of disjoint sets by
carrying out intermixed find and union operations are called
union-find problems [31]. Within the context of CCL, union-
find is used for managing the set of labels associated with a
single connected component, and for selecting the represen-
tative label for a component.

2.1.1 Graph notation

The most common union-find data structure to represent dis-
joint sets (distinct components) is a directed forest. Each
provisional label assigned to a connected component is rep-
resented by a vertex. A directed forest is an acyclic graph
where directed edges, referred to as arcs, link pairs of ver-
tices, indicating the relationship between the associated la-
bels. The following graph notation represents the directed
forest structure F as a set of vertices V(F) and edges E (F):

F =(V,E)

V(F)={vo,...,vu—1} ®))
E(F) Z{(V,'O — Vjo)’ ceey (Vi;:171 — Vim_i )}

For each edge, v; — v}, v; is the child vertex, and v; is the
parent. Each vertex has exactly one parent (except for a root
vertex which has no parent), with the edge represented by a
pointer to its parent. A vertex may have many children; ver-
tices with no children are leaf vertices. A path from vertex
V1 to vertex vy is denoted v; — vo, which consists of a se-

quence of vertices vi — v; — ... — vp, where each pair of
two consecutive vertices is an arc in E(F).

Definition 3 Rooted Tree: A tree (or more formally, a di-
rected rooted tree) T is a sub-graph of F' comprising a root
vertex v, and all of its children.

Each vertex belongs to exactly one tree, and there is a path
following the edges of T from every vertex in the tree to v,
[24]. Therefore:

V(T,,) =A{vi:vie V(F)Avi— v }. (6)

A tree is associated with one connected component in
the image. The root vertex of each tree, serves as the repre-
sentative element for the set. Each tree is referred to by its
root v, (and its associated representative label for the con-
nected component).

Definition 4 Level of a vertex in a tree: The level of a vertex
v, level (v), is the number of arcs between v and the root, v,.

The level of the root vertex is therefore 0, and for all
other vertices the level is one higher than the level of its
parent:

0 =y, (iti t),
level(v):{’ v = v, (it is root) )

level(parent(v))+1, otherwise.

(2) (b)

Fig. 1 (a) A label is assigned to each pixel in raster scan order. Also
shown is the neighbourhood of a pixel at position p, = (x,y) and
(b) union-find data structure F of the image from (a).

Definition 5 Height of a tree: The height of a tree T,
height(T), is the maximum level of a vertex in V(7).

height(T) = max{level(v;) :v; € V(T)}. 8)

Connected components labelling sequentially assigns a
label L[p] to each pixel p, with the goal of eventually as-
signing the same label to all pixels belonging to a single
connected component. Since there is a one-to-one relation-
ship between labels and vertices of the forest F, in the dis-
cussion here the term label is synonymous to a vertex of
V(F). Assigning L[p] := L,, is therefore equivalent to as-
sociating p with vertex L, . An example image is shown in
Figure 1(a) and the corresponding forest derived from this
image is shown in Figure 1(b).

2.1.2 Union-find algorithms

Union-find algorithms have three key operations. MAKE-
SET(e) creates a set S, consisting of a single element e; a
UNION(e, f) replaces the sets S, and Sy by S, USy [15]; and
a FIND(e) returns the representative element of the set con-
taining e [15].

With a forest structure in the context of CCL, the op-
erations have the following meanings: MAKESET creates a
new tree within F and corresponds to assigning a new la-
bel to a new connected component; UNION joins two trees
into a single tree, corresponding to merging two previously
disjoint connected components; and FIND returns the root
vertex of the tree which contains a specified vertex, corre-
sponding to finding the representative label of a connected
component.

Algorithms 1 to 3 present common variations of union-
find which are discussed in the following. These algorithms
operate on a directed forest data structure, F', which contains
np vertices. Adding a vertex to F', changing the parent of a
vertex or looking up the parent of a vertex in F' are each
referred to in the following as one uf-instruction (union-find
instruction).
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Algorithm 1 QuickFind based union-find.

Algorithm 3 QuickUnion with path compression.

: procedure MAKESET(vertex e)
parent[e] := 0
: end procedure

1

2

3

4: function FIND(vertex ¢)

5:  if parent[e] = O then

6: return e

7 else

8: return parent[e]
9:  endif

10: end function

> Only a single lookup required

11: procedure UNION(vertex e, vertex f)
12:  root, := FIND(e)
13:  rooty := FIND(f)
14:  forvin V(F) do

15: if parent[v] = root, then > Every vertex of tree added
16: parent[v] := rooty > is linked directly to the root
17: end if

18:  end for

19:  parent[e] := rooty
20: end procedure

Algorithm 2 QuickUnion based union-find.

1: procedure MAKESET(vertex e)
2:  parent[e] :==0
3: end procedure
4: function FIND(vertex ¢)
5:  if parent[e] = O then
6: return e
7:  else
8: return FIND(parent[e]) > Recursively search for root
9:  endif
10: end function
11: procedure UNION(vertex e, vertex f)
12:  root, := FIND(e)
13:  rooty := FIND(f)
14:  if root, # rooty then
15: parent[root,] := rooty > Link one tree to the other
16:  end if
17: end procedure

QuickFind based union-find (Algorithm 1) [15] main-
tains F' so that every leaf is directly connected to the root.
A FIND, therefore, consists of one uf-instruction. A UNION
checks which vertices of F' belong to the changed rooted tree
and changes each of their parents to the new root. A UNION
can, therefore, require up to 2nr uf-instructions in the worst
case.

QuickUnion based union-find (Algorithm 2) [15] com-
bines two trees by making the root of one tree the parent of
the root of the other tree. This requires two FINDs for one
UNION; which requires up to ng uf-instructions in the worst
case [27]. Both QuickFind and QuickUnion have quadratic
run time in the worst case [27].

QuickUnion with path compression (Algorithm 3) [15]
joins all vertices which are visited during a FIND directly to
the root vertex. Whenever these values are accessed again

: procedure MAKESET(vertex e)
parent[e] := 0
: end procedure

1
2
3
4: function FIND(vertex ¢)
5:  if parent[e] = O then
6.
7
8

return e
else
root := FIND(parent[e]) > Recursively search for root
9: parent[e] := root > Compress path
10: return root
11:  endif

12: end function

13: procedure UNION(vertex e, vertex f)
14:  root, := FIND(e)

15:  rooty := FIND(f)

16:  if root, # rooty then

17: parent[root.] := rooty

18:  endif

19: end procedure

> Link one tree to the other

they will point directly to the root (at the time that the path
was compressed). The worst case run time of QuickUnion
with path compression grows with the inverse of the Acker-
mann function [30] (which is quasi-linear for practical
cases) when the tree size of the union-find data structure is
balanced with a heuristic such as union-by-rank [30], which
is not discussed in this paper.

For connected components labelling or analysis, the se-
quence of UNION and FIND operations depends on the input
image. This can be used to derive a more efficient union-find
algorithm for the special case of CCA and CCL of two di-
mensional images.

2.2 Improved union-find

Single pass CCA requires the label for each pixel to be re-
solved on-the-fly so that the contribution of the pixel to the
feature vector can be allocated to the correct component. For
streamed images, the order of operations is determined by
the order in which the pixels are scanned, along with the
local connectivity.

The pixels of the input image / are streamed or scanned
row-wise from the top-left position (0,0) to the bottom-right
position (W — 1,H — 1). A position p; preceding another
position p; in the raster scan order is denoted as p; < p».

As the data structures are updated dynamically as the
pixels are processed, it is necessary to define the structures
that represent the state after processing each pixel. Let p, be
the current pixel. The set visited contains all pixels which
have already been visited after processing the current pixel:

visited = {px} U{p: p < px}. )

Two pixels py, p» are connected in image [ as scanned so
far, if they are connected by a path of adjacent object pixels
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Algorithm 4 Context-based union-find algorithm.

1: procedure MAKESET(vertex e)
2:  parent[e] :=e
3: end procedure
4: function FIND(vertex ¢)
5:  return parent[e]
6: end function
7. procedure UNION(vertex e, vertex f)
8:  root, := FIND(e)
9:  rooty := FIND(f)
10:  if root, < rooty then > Age-balancing heuristic
11: parent[root ] := root,
12:  else
13: Stack.PUSH(rooty,root,) > Caching for path compression
14: parent[root.] := rooty
15:  endif
16: end procedure
17: procedure FLATTEN()
18:  while —Stack.empty do > Path compression
19: Lyin,Limax := Stack.POP()
20: parent[L,,4x] := FIND(L,,in)
21:  end while
22: end procedure

in visited. Equation (4) can be extended to define p; <—(>1 P2
visite
as

p1, pa € visited N [p1]=I[p2]=1 A || p1 — p2||=1
or  3p;:I[pi|=1 Ap1 <— piApi < pa.

visited visited

(10)

As F is updated as each pixel is processed, let F,_be the
state of I before processing pixel py, and F,, be the resultant
state after processing.

Definition 6 Component segment: All pixels belonging to
the same connected component after processing pixel p, are
a component segment.

Component segments therefore correspond to sets of
pixels with labels associated with individual trees in F), , and
are subsets of the final connected components of 1.

Algorithm 4, a context-based union-find algorithm, ex-
ploits the order of UNION and FIND operations combined
with an age-balancing heuristic [8] to achieve linear run time
and requires fewer uf-instructions in the worst case than
QuickFind (Algorithm 1), QuickUnion (Algorithm 2) or
QuickUnion with path compression (Algorithm 3). Age-bal-
ancing ensures that the label assigned to the earliest pixel of
a connected component encountered during a scan is always
the root vertex.

Context-based union-find combines the best features of
QuickFind and QuickUnion. Like QuickFind, the FIND re-
quires only one uf-instruction. The UNION of two vertices
makes one root vertex the parent of the other, similar to

QuickUnion with the addition of age-balancing. In addition
to MAKESET, UNION and FIND operations, a fourth opera-
tion, FLATTEN, is introduced which performs the equivalent
of path compression by making the root vertex the parent of
all vertices in a tree.

In QuickUnion with path compression (Algorithm 3),
path compression is performed within the FIND, process-
ing from the leaves towards the root by following the arcs of
E(F) as they are searched by FIND [29]. In contrast, FLAT-
TEN starts at the root vertex and processes towards the lea-
ves. To accelerate this, arcs joining vertices with
level(v) > 1 that will be encountered in subsequent process-
ing are recorded in a stack during the UNION operations.

Normally, FIND is used to determine the root of a label
vertex [30]. Since context-based union-find, replaces FIND
by a single lookup, it therefore returns only the parent of a
vertex. For convenience, every root vertex points to itself,
i.e. parent[v,] = v,. A single lookup is equivalent to a FIND
for trees of height(T) < 1; this will only be the root vertex
for vertices of level zero or one.

Definition 7 Stale label: A label L; is called a stale label if
a single lookup does not yield the root label.

A necessary condition for the FIND not to return a stale
label, is that the CCA algorithm using Algorithm 4 must
ensure that FLATTEN is always called before a FIND is ap-
plied on a vertex with level larger than one. As outlined in
[1], and proven in Section 4, this can be achieved by call-
ing FLATTEN after processing each image row. One situa-
tion where height(T) = 2 during processing is identified. In
SLCCA this exception is managed by deferring the second
lookup, whereas in DLCCA the second lookup is performed
explicitly.

2.3 State-of-the-Art CCL and CCA algorithms

Since the introduction of the classic connected components
labelling algorithm by Rosenfeld et al. [26], CCL has been
improved in many aspects. A summary of several properties
of (mainly) modern CCL and CCA algorithms is given in
Table 1 which compares:

Number of passes

Scan mode and scan order

Worst case run time, and how this was evaluated
Categorisation of set merging algorithm used

Rosenfeld’s classical CCL algorithm [26], is a two-pass
algorithm where the first pass uses a binary image as an in-
put and creates a provisionally labelled image. If more than
one label is assigned to a connected component, these labels
are stored in an equivalence table. These equivalence rela-
tions detected during the first scan are resolved at the end of
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Table 1 A comparison of properties of representative CCL and CCA algorithms. The set merging algorithm according to the definitions from
Section 2.1 are identified. Some algorithms use an optimised variant of the algorithm from Section 2.1, some use path compression.

Method Abbr. Passes Form Scan Scan order  Connect Run time complexity Set merging algorithm
Rosenfeld, 1966 [26] Classical 2 CCL pixel raster scan 8 N/A Rosenfeld [26]
Dillencourt, 1992 [8] GCCL 2 CCL pixel raster scan 4 Linear (formal proof) QuickUnion + path compression
Di Stefano, 1999 [7] SEL 2 CCL pixel raster scan 4 N/A QuickFind

Suzuki, 2003 [28] SCT multi CCL pixel raster scan 8 Linear (experimental) Iterative connection table
Wu, 2009 [35] SAUF 2 CCL pixel raster scan 8 Linear (formal proof) QuickUnion + path compression
He, 2008 [12] RTS 2 CCL run raster scan 8 N/A Optimised QuickFind

He, 2015 [11] HCS 2 CCL run raster scan 8 Linear (experimental) Equivalent label sets
Lacassagne, 2011 [19]  LSL 3 CCL run raster scan 8 N/A QuickUnion

Chang, 2004 [5] CcT 1.5 CCL pixel contour tracing 8 Linear (formal proof) None

Grana, 2010 [10]  Block 2 CCL block modified raster 8 Linear (experimental) QuickUnion + path compression
Bailey, 2007 [1] OSP 1 CCA pixel  raster scan 8 Linear (informal) Context-based union-find
Trein, 2007 [32] RLSP 1 CCA run raster scan 8 N/A QuickUnion

Ma, 2008 [22] AR 1 CCA pixel raster scan 8 Linear (informal) Context-based + relabelling
Klaiber, 2016 [18] SLCCA 1 CCA pixel raster scan 8 Linear (formal proof *) Context-based union-find
Jeong, 2016 [16] CAM 1 CCA pixel raster scan 8 Linear (informal) Direct

proposed DLCCA 1 CCA pixel raster scan 8 Linear (formal proof *) Context-based union-find

the first pass by iteratively sorting and replacing the entries
of the equivalence table until the table contains one entry
for each connected component. After this process, each en-
try of the equivalence table contains all provisional labels
assigned to its connected component in the first pass sorted
in ascending order, starting with the smallest label which
serves as a representative element. During the second pass
all the object pixels of the provisionally labelled image are
replaced by their representative values from the equivalence
table. This assigns the same label to each pixel of a con-
nected component.

Dillencourt et al. [8] proposed a general two-pass CCL
algorithm (GCCL) for different image representations such
as 2-D arrays and quad-trees. This algorithm uses QuickU-
nion with path compression extended by an age-balancing
heuristic embedded into the UNION operation. Using this
property it is formally proven that this algorithm scales lin-
early with the number of pixels in /.

In [7], Di Stefano et al. describe a simple and efficient
connected components labelling (SEL) algorithm. It requires
two passes to label all pixels using an equivalence table as
the union-find data structure carrying out the QuickFind al-
gorithm. The algorithm is improved for the worst case im-
age. The image pattern becoming the new worst case with
the proposed improvement, however, still requires a quad-
ratic number of uf-instructions.

In [28], Suzuki et al. proposed a multi-pass CCL algo-
rithm using a connection table to store the relations between
provisional labels. This algorithm is, therefore, referred to as
scan plus connection table (SCT) CCL algorithm. Previous
multi-pass algorithms propagated labels by neighbourhood
operations. The algorithm in [28] creates a forest structure
stored in the connection table during the first scan, with one
tree structure for each connected component consisting of

T Proof is provided in this paper.

provisional labels as vertices. Every scan over the image de-
creases the height of the tree structure in the connection table
by one. The algorithm merges disjoint sets, however, it can-
not be categorised as a union-find algorithm such as those of
Section 2.1. The run time is stated to be linear in the number
of pixels which is determined by experimental evaluation.
It should be noted, however, that it would be difficult to ex-
perimentally distinguish between linear processing, and run-
times proportional to the inverse Ackermann function [30]
with small images. Most of the images used for evaluation
require four or fewer passes for final labelling [28].

In the two-pass CCL algorithm presented by Wu et al.
[35], the union-find data structure is represented by an array,
therefore, it is referred to as scan plus array-based union-
find (SAUF). QuickUnion with path compression is used to
maintain this array-based union-find data structure. To ac-
celerate the label selection process for each pixel, a decision
tree is proposed reducing the number of labels of the neigh-
bourhood to be accessed. A formal proof for the linear run
time of the algorithm is given.

The CCL algorithm by He et al. [12] is a two-pass al-
gorithm which run-length encodes the binary image during
the first pass and processes these runs in the second pass.
The algorithm uses a union-find data structure stored in an
array which is updated by an optimised variant of Quick-
Find. To avoid updating all entries of the array for a UNION
operation, an additional linked list is maintained for each
tree structure in the array containing all the vertices of the
tree structure. A UNION on two vertices links the two lists
and updates the equivalence table entries of these vertices to
the root vertex. This set merging algorithm is referred to as
Equivalent Label Sets strategy (ELS) [14,11]. In [13] they
optimise their algorithm to only process runs of object pix-
els in the second pass and in [11] extend the algorithm to
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also compute the Euler number. Since, [11] focuses on fea-
ture extraction, only the part involved in CCL is considered,
and is referred to as HCS.

For light speed labeling (LSL) [19] Lacassagne et al.
identified memory accesses and conditional statements to be
the key issue slowing down CCL on state-of-the-art proces-
sors with a RISC architecture. Their algorithm consequently
optimises these by distributing the labelling process to three
passes, replacing the conditional operations. For set merg-
ing, a variation of QuickUnion is applied. In [3] LSL was
identified to require the fewest processing cycles per pixel
when carried out on a general-purpose processor.

Chang et al. [5] follow a completely different approach.
Instead of scanning the image in raster scan order, connected
components are identified by contour tracing which requires
random access to the image data. During the raster scan,
when an unlabelled component is encountered, the border
is traced using contour tracing. During this process, con-
trol information is stored in the labelled image so that pixels
surrounded by already labelled pixels can be labelled when
scanning resumes. Contour tracing (CT) avoids the need for
set merging. The authors claim this to be a single-pass al-
gorithm, however random access to the input image during
contour tracing effectively means that more than one pass is
required. In Table 1 it is, therefore, denoted as a 1.5 pass al-
gorithm. The required random access makes this algorithm
less practical for recent processors and dedicated hardware
architectures.

Grana et al. [10] made the observation that all of the
pixels within a 2x2 block will have the same label. They ex-
tended the idea of pixel-based labelling to processing a 2x?2
block of pixels at a time. Block-based processing operates in
a raster scan of 2x2 blocks, hence it is identified as a mod-
ified raster scan in Table 1. Like Wu et al. [35], a decision
tree approach is used to minimise the number of neighbour-
hood accesses during label assignment. The decision tree is
considerably more complex than that for processing single
pixels, so Grana et al. developed an algorithm to derive the
optimal decision tree. The set merging algorithm is Quick-
Union with path compression, with the trees updated online
(whenever a merger occurs).

All of the two-pass CCL algorithms use a set merge al-
gorithm which requires either a minimum of two instruc-
tions for a FIND, or have a UNION operation which scales
quadratically with the number of labels.

Single-pass CCA algorithms require that the component
feature vector be accumulated while determining the con-
nectivity in the first pass. All of the two-pass CCL algo-
rithms use the second pass for relabelling, so could poten-
tially be converted into single pass CCA algorithms by ac-
cumulating the feature data during the first pass. However,
single-pass CCA algorithms have generally been designed
in terms of hardware architectures, optimised for directly

processing a video stream. With stream processing, the pro-
cessing, including feature vector accumulation, is performed
in a pipelined manner in hardware.

The original single-pass (OSP) CCA algorithm by Bai-
ley and Johnston [1] introduced the principle behind the con-
text-based union-find algorithm, although it was not identi-
fied in terms of union-find. The union-find graph was repre-
sented by storing the links in a merger table. The algorithm
was based on the one lookup per pixel paradigm, with the
use of a stack to optimise the FLATTEN operation. This built
on earlier work [2] which introduced the parallel data table
and merging the data on-the-fly as regions merged.

Trein et al. [32] accelerated the processing by using run-
length encoding. Hence it is labelled RLSP for run-length
single-pass CCA. The run-length encoding takes multiple
input pixels in parallel, with the runs subsequently processed
as one segment (or one overlap between segments) per clock
cycle. To manage mergers, they used a pointer from the old
label to the new label so that the data from extending an old
label could be assigned to the correct component, and the
current label assigned to the run. The simple use of pointers
in this way corresponds to a QuickUnion, which requires a
quadratic number of uf-instructions in the worst case. Data
accumulated for each component is output as soon as it is
detected that a run is not extended, enabling the memory for
data accumulation to be reused.

Bailey’s OSP algorithm was optimised by Ma et al. [22]
to significantly reduce the size of the data and merger tables
through aggressive relabelling (AR). Each row is relabelled
beginning with label 1 on the left, requiring translation of
labels from one row to the next. The original context-based
union-find is used, although a second lookup is required for
the translation associated with relabelling. The two lookups
are pipelined in the hardware implementation. One interest-
ing feature of relabelling is that many mergers are managed
by the translation table rather than the merger table, reduc-
ing the time required for the FLATTEN operation at the end
of each row.

Klaiber et al. [18] took a different approach to reduce
the memory requirements while retaining the single lookup
paradigm (SLCCA) through label recycling. Augmented la-
bels are introduced to maintain the age-balancing heuristic
to ensure correct operation of the context-based union-find
algorithm. This algorithm is described more fully in Sec-
tion 3, and proven to have linear run time in Section 4.6.
Insights gained from the proof of correctness have led to the
optimised DLCCA, presented later in this paper.

Jeong et al. [16] removed the need for union-find com-
pletely by directly replacing all instances of the old label
by the new label whenever a merger occurs. This removes
the need for an equivalence table or merger table. However,
it requires implementing the label memory (or the buffer
caching the temporary labels) as content addressable mem-
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ory (CAM). In hardware, the parallel update of the content
addressable memory cannot be implemented using the mem-
ory blocks on an FPGA; instead Jeong used a multiplexed
shift register. Although this method recycles labels imme-
diately after mergers, it does not detect completed objects
until the end of the frame, requiring the size of the data table
to be the proportional to the image area in the worst case.

3 Algorithmic Description of SLCCA

Of all the single-pass algorithms, the SLCCA algorithm [18]
was chosen for formal proof because it satisfies all of the re-
quirements outlined in the introduction, and it currently rep-
resents the state-of-the-art of single-pass CCA algorithms in
terms of efficiency of resources and processing speed. The
algorithm underlying the hardware architecture of SLCCA
is presented in Algorithm 5. Its constituents are explained
in Algorithms 5.1 to 5.5 presented at the points in the pa-
per where the corresponding algorithmic background is ex-
plained in detail.

The double for loop in lines 1 and 2 of Algorithm 5 per-
forms the raster scan through the image. When processing
streamed data, these loops are implicit in the order that pix-
els arrive. The three operations for each pixel can be im-
plemented in one clock cycle each in hardware, and can be
pipelined enabling one pixel to be processed per clock cycle.
At the end of each row, a FLATTEN is invoked to ensure that
the level of any vertices accessed during the following row
have height(T) < 1. In parallel with the pixel processing,
when it is detected that a connected component is complete,
its associated feature vector is output.

The union-find label graph, F, is realised as a 1-D ar-
ray, the merger table, MT, indexed by the label, L,, corre-
sponding to each vertex, v. The arcs, E(F), are represented
by storing the label of parent(v) in MTIL,] (each vertex
has only one parent). So that lookup of a root vertex, v,,
returns a valid label, every root vertex points to itself, i.e.
MTI[L,] = L,,.

The provisional label assigned to pixel py = (x,y) is sav-
ed in a label image, L[p,]. In CCA, the labelled image is not

Algorithm 5 SLCCA algorithm.

Input: Binary image / of width W and height H

Output: A feature vector for each connected component in /
1: fory=0to H—1do

2: forx=0toW —1do

3 UPDATENEIGHBOURHOOD > Algorithm 5.1
4: UPDATEDATASTRUCTURES > Algorithm 5.2
5 RESOLVESTALELABELS > Algorithm 5.3
6 end for

7 FLATTEN > Algorithm 5.4
8: end for

9: READFINISHEDFEATUREVECTORS > Algorithm 5.5

Table 2 Nomenclature used in the following sections.

Abbreviation = Name / description
DT Data table for accumulating feature vector
F Forest structure for L
FS Flatten stack to accelerate FLATTEN operation
Fv Feature vector
H Image height
1 Source image
IFV Initial feature vector
IsRoot Flag indicating that a label is a root
L Labelled image
LabelFIFO  FIFO for recycling labels
LastLine Last line the component was updated
MT Merger table
Dx The current pixel during processing
SLS Stale label stack for managing F'V's of stale labels
w Image width

11 12 12 11 12
Px

Fig. 2 Merger patterns possible in the labels of neighbourhood L.

required as output, however one row must be maintained for
propagation of labels. L is therefore stored as a 1-D array
indexed by column, i.e. L[x].

The abbreviations and names of data structures used in
the following are summarised in Table 2.

3.1 Update Neighbourhood

Definition 8 Neighbourhood: The neighbourhood 1 is the
set of four positions that have already been processed, adja-
cent to the current pixel at position p, (see Figure 1(a)), i.e.

n= {(_la_1)7(07_1)7(17_1)’(_170)}+px

1
={A,B,C,D}. (b

The provisional labels assigned to positions in 7] are
therefore L[A], L[B], L|C] and L[D]. The current resolved la-
bels (after a FIND) associated with 1 are contained in vari-
ables L4, Lp, Lc and Lp. These are realised as registers in
the SLCCA hardware architecture. The label assigned to the
current pixel is denoted L, .

Since adjacent object pixels at the positions 1 will al-
ready have the same label as a result of prior processing, a
merger of component segments (requiring a UNION of the
corresponding trees) can only occur between non-adjacent
pixels, i.e. between L4 and L¢, or Lp and L¢ [35], as shown
in Figure 2. As an optimisation, L,,p is introduced to refer
to the label of L4 or Lp, i.e. all mergers consist of the two
labels La,p and Lc.

To move from one window position to the next of the
same row, the label values are shifted as given in Algo-
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rithm 5.1. The superscript ~ denotes the corresponding
neighbourhood at the previous position. This shifting re-
quires only the label coming into position C to be looked
up with a FIND operation (on line 20).

Algorithm 5.1 UPDATENEIGHBOURHOOD
10: if I[A] then

11: LADrD = LE

12: else

13: LADrD = L;X
14: end if

15: if I[B] AI[D] then
16: Lg = L;X

17: else

18: LB = LE

19: end if

20: Lc:=MTIL[C]]

> Select La,p
> Next value of Ly

> Next value of Lp

> Propagate new label into next neighbourhood

> Single lookup of label on previous row: FIND

3.2 Update Data Structures
3.2.1 Label Selection

The set Ly denotes all object pixel labels in the neighbour-
hood of the current pixel.

Ln = {LAorDyLByLC}\{O}' (12)

When a pixel is processed, it is assigned a label L, . Back-
ground pixels are assigned label 0. For object pixels, a label
from Ly, is propagated to the current pixel where possible.

A new label operation is performed if an object pixel has
no object pixels in its neighbourhood, i.e. it is assigned the
next available new label (a MAKESET on F), creating a new
tree). Conceptually, to achieve age-balancing, the new label
(called newLabel in line 23) is provided by a counter, which
is incremented for each new label. The new label operation
sets MT [newLabel] := newLabel. To more easily detect stale
labels, a flag IsRoot is associated with each label.

A label copy operation propagates the one label in Ly
(as determined by the function POSMIN in line 46) to the
current position of the labelled image L[p,].

A merger pattern is detected when L4,p and L¢c have
different labels and neither is background, i.e. when
(I[A] VIID]) AI[C] A Laoyp # Lc. The last term on line 28
is required to manage the case where the label of C is stale
(this will be discussed further in section 3.3). A merger op-
eration makes the label which first appears in the raster scan,
Lyyin, the parent label of L. This corresponds to a UNION
merging separate trees in F, . The vertex associated with

Px
Lyay is no longer a root so the flag IsRoot Ly is cleared.

Definition 9 Propagating and non-propagating patterns: A
merger pattern is propagating if La,p < Lc otherwise it is
non-propagating.

Algorithm 5.2 UPDATEDATASTRUCTURES

21: if I[p] then
22: if ~I[A] A~I[B] A—I[C] A—I[D] then

> New label operation

23: L, = newLabel > (Lp, < LabelFIFO)
24: MTIL, ] =L, > MAKESET
25: IsRoot[L,, ] = true

26: DT[L,,] == IFV(py)

27:  else > Merger operation: UNION
28: if (I[A] \/I[DD /\I[C] A Laorp # Lo A Laorp 7& L[C] then

29: if Laop < Lc then > Propagating merger
30: Linin ‘= Laorp

31: Lyyax = L¢

32: else > Non-propagating merger
33: Lyin = Lc

34: Linax = Laorp

35: FS.PUSH (Liin, Linax) > Stack labels for FLATTEN
36: end if

37: if IsRoot [Lyngy] then > Prevent multiple recycling
38: Lyax — LabelFIFO > Recycle old label after merging
39: end if

40: pr = Lmin

41: MT [Lrizuv] = Luin

42: IsROOt|Lyyqy] = false

43: DT [Lyin) = DT [Lyin) 0 DT L) o IFV (py)

44: DT [Lypax] =0

45: else > Label copy operation
46: Ly, :=POSMIN(Lyorp,Lg,Lc)

47: DT[L,,] = DT[L, ] o IFV(p,)

48: end if

49: if —IsRoot[Lp,) A (Lp, # SLS.head) then

50: SLS.PUSH(L),) > Manage stale labels in building F'V
51: end if

52:  endif

53:  LastLine[L, ] =y > For detecting completed FV's
54: else

55 L, =0 > Background pixel
56: end if

57: Lipy] =Ly, > Save label for processing next row

Fig. 3 (a) Propagating, and (b) non-propagating, merger patterns.

Figure 3(a) shows an example of a propagating merger
pattern, where the label Ly,,p is propagated through several
mergers. Figure 3(b) is an example of a sequence of non-
propagating merger patterns.

A sequence of non-propagating mergers can result in la-
bels having level(v) > 1 on the next row. These are resolved
by flattening the trees at the end of each row.
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Table 3 Data structure and combining operator for the feature vectors
area, bounding box and first order moment.

Feature IFV Combining operator

Feature vector  py = (x,y) FV,oFV,
Area A 1 As+Ay,
Xmin X min (xmin,a 5 xmin,h)
Bounding box Ymin y mln())min,aa))min,b)
Xmax X max (xmux,a 5 xma.nh)
Vmax y max (ymux,a 5 Yinax,l7)
. Mo x Mioq +Mop
First order moment
(M01> <Y> (Mom + Mo1p

3.2.2 Feature Vector Collection

Definition 10 Feature vector: The feature vector of an im-
age component is an n-tuple composed of functions of the
component’s pixel pattern.

Connected components analysis is concerned with de-
riving the feature vector for each connected component. To
accumulate the feature vectors of component segments, a
data table, DT, maintains one feature vector for each label.
An operator o is defined for combining the feature vectors
when a merger operation is induced. The initial feature vec-
tor (IFV) is the feature vector of a single pixel. Table 3
presents the data structures, the initial feature vectors, and
the combining operation for extracting area, bounding box
and first-order moment of connected components.

For a background pixel, nothing needs to be saved in
DT. A new label operation writes the /FV of the current
pixel to DT'[L, ] (line 26). A label copy operation combines
the current pixel’s /F'V with the feature vector stored in DT
(line 47). A merger operation combines the feature vectors
of the object labels in Ly with the /F'V and stores the result
in DT [Ly,n] (line 43); the data table entry at index Ly is
also invalidated.

3.2.3 Label Reuse

The memory requirements of MT and DT are proportional
to the number of labels used, which in the worst case is pro-
portional to the image area [1]. However, at any time, the
number of feature vectors updated in one image row is only
proportional to the image width [21,17]. Memory require-
ments can be significantly reduced by recycling labels no
longer in use, enabling entries of MT and DT to be reused
after a connected component is completed. Rather than use
a counter, newLabel is obtained from a FIFO, LabelFIF O,
initialised with the set LabelFIF O;y,;;, which contains all
possible labels [18]:

LabelFIF Oy = {1,...,[Y27}. (13)

Labels which are ready for reuse are queued at the end of
LabelFIFO.

To detect when a connected component has been com-
pleted, a tag, LastLine, is associated with each label. Dur-
ing the raster scan, whenever a label, L, , is updated, its
LastLine tag is updated with the current image row

LastLinelL, | .=y whenL, #0 (14)

to reflect that the component is not completed. Labels for
which LastLine is not updated from one line to the next
are detected as completed (as described in section 3.5), en-
abling the labels of completed components to be recycled
and reused.

After every merger operation, label L, is no longer re-
quired. However, it must not be reused for one image row
since the labelled image L still might contain L, in the
current image row to the left of the current position. Writing
Lyyqy to the end of Label FIF O ensures that it is not assigned
to a new connected component within the following image
TOw.

The reuse of labels in this way requires modifying the
method used to determine L, and L,,,. New labels pro-
duced by a counter strictly increase in scan order. There-
fore, realising the <-operator as a comparison is sufficient.
When reusing labels, the numeric labels are not necessarily
assigned to component segments in increasing order. There-
fore augmented labels are introduced to realise the function-
ality of the <-operator with label reuse.

An augmented label is a two-tuple consisting of the row
number L.rw in which the label is first assigned and L.index
which is used as an address to access array data structures.
For example, DT'[L,, | translates to DT'[L,, .index|. The row
number rw is used for decisions in merger operations. The
evaluation of La,p < L¢ (line 29) is thus realised as

Laorp.rw < Le.rw. (15)

This ensures that L,,;, is always the label created earlier dur-
ing processing, leading to correct age-balancing behaviour
when a merger pattern is detected [1].

When a new label is assigned to a component segment,
its index is pulled from the head of LabelFIF O, i.e. newLa-
bel in Algorithm 5.2 line 23 is realised as

newLabel .rw =y,

16
newLabel.index < Label FIF O. (16)

3.3 Resolve Stale Labels

A stale label within Ly requires an additional lookup to de-
termine the root vertex. Rather than performing this lookup
immediately, SLCCA defers this until the root label appears
in Ly. If a non-root label is assigned to L, as determined
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from the IsRoot flag, the feature vectors of the object labels
in Ly are combined and stored to data table entry DT[L, ]
for later combination with the feature vector of the root of
L. The non-root label is pushed onto the stale label stack
(SLS) (Algorithm 5.2 line 50) until its root appears in Ly.
To avoid duplicate entries which lead to increased memory
requirements and processing times, a label is only added to
SLS if it differs from the top entry, SLS.head.

When SLS.head is equal to L[C], then the lookup to de-
termine Lc will return the label associated with the root ver-
tex. Algorithm 5.3 then combines the feature vector of the
stale label with the feature vector of the current component
segment, and stores the result in DT'[L¢|. The data table en-
try associated with the label popped from the stack is then
invalidated.

This enables an on-the-fly processing of feature vectors
of reachable stale labels.

Algorithm 5.3 RESOLVESTALELABELS

58: if SLS.head = L|C] then

59:  Lgaie = SLS.POP()

60:  DT[L¢] = DT[Lc] o DT [Lgae)
61:  DT|[Lyae] =0

62:  FS.PUSH(Lc,Lgare)

63: end if

> Stack for FLATTEN

3.4 Flattening Trees in F

A prerequisite for Algorithm 4 to produce correct results
is that all trees of the forest structure in M are reduced to
height(T) < 1. This can be achieved by using path compres-
sion, which is embodied in the FLATTEN operation.

Since minimum labels propagate to the right due to the
raster scan by assigning L, to L,_, the height of a tree in
F),, is increased by one for each non-propagating merger
pattern. Therefore, the arc from L, to L,,;, created by a
union operation induced by a non-propagating merger pat-
tern is pushed onto the stack F'S to accelerate flattening (Al-
gorithm 5.2 line 35).

Algorithm 5.4 FLATTEN

64: while —FS.empty do

65:  Luin, Linax = FS.POP()
66:  MT|[Lyay] = MT [Lyin)
67: end while

> FIND on RHS

At the end of each image row, FLATTEN is invoked as
listed in Algorithm 5.4. This pops the arcs off the flatten
stack F'S, visiting them in reverse order, effectively perform-
ing a scan from the root to the leaves in the reverse order

that the tree was constructed. The vertex associated with la-
bel L4, in FS is made the child of the minimum label L,,;,
which successively connects each label to the root, flattening
the forest structure in M to a height of one.

3.5 Detecting Completed Connected Components

Label reuse requires the data of completed components to
be removed from the data table DT so that the label to be re-
cycled. A connected component is completed when no fur-
ther pixels are added to the component in the current row.
This cannot be checked until the end of the current row is
reached, so in practise, it is checked while the next row is
processed. That is a connected component with label / can
be detected as completed if LastLine[l] was last updated on
row y — 2 (it was not extended onto the previous row as in-
dicated in Figure 4), i.e.

LastLine[l] =y —2. 17

The data table, DT, is searched for feature vectors of
completed connected components once per row in parallel
with the update process. When a completed component is
detected, the feature vector from the data table is output.
The data table entry is then cleared to be reused by a subse-
quent connected component and the label recycled for sub-
sequent components by returning the label to the end of the
LabelFIFO. This process is represented in Algorithm 5.5.

Of course, all remaining objects are completed after pro-
cessing the last row of the image.

Note that in a hardware implementation, it is unneces-
sary to store all the bits of y in LastLine. Two bits are suffi-
cient to satisfy (17) unambiguously.

Algorithm 5.5 READFINISHEDFEATUREVECTORS

68: while — end_of_image do
69: forl:=1to [@} do

70: if DT[I] # O A (LastLine[l] = y — 2) then

71: Output: DTl

72: DT[l]:=0

73: | — LabelFIFO > Recycle the label
74: end if

75:  end for

76: end while
77: for [ :=1to [@] do
78:  if DT[] # 0 then

> End of image

79: Output: DT[]

80: DT[l]:=0

81: | — LabelFIFO > Recycle the label
82:  endif

83: end for
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Fig. 4 Visualisation of the positions in the sets visited, rightPos,
leftPos in the image.

4 Proof of Correctness of the SLCCA Algorithm

In this section, it is shown that the correct feature vector
is extracted for each connected component in a binary in-
put image, I, using the algorithm presented in Section 3.
In particular, it is shown that replacing FIND of the clas-
sical union-find algorithm by a single lookup as in (Algo-
rithm 5.1), the FLATTEN operation of Algorithm 5.4, and
the deferred lookup of stale labels in Algorithm 5.3 all re-
sult in the extraction of the correct feature vectors for the
connected components in /. To do this, a top-down hierar-
chical proof will be used.

I is only processed once in raster scan order. The current
pixel p, = (x,y) is assigned a label based on the labels in
its neighbourhood 7. Therefore, only the labels in L of the
previous line are used to determine the subsequent labels in
the scan process. It is convenient to divide the corresponding
positions into two sets relative to p,, as depicted in Figure 4.
The set leftPos contains the pixel positions of the current
row to the left of py:

leftPos = {(i,y): 0<i<x, i € N}, (18)

and rightPos contains the pixel positions of the previous row
to the right of p,:

rightPos = {(i,y—1):x<i<W, i€ N}. 19)

Replacing FIND by a single lookup to determine the con-
nected component’s root label works correctly for labels as-
sociated with vertices of level(l) < 1. The feature vectors of
these labels can be easily accumulated and associated with
their connected components.

However, as a result of several mergers, a label can be-
come stale (level(l) > 1). To associate such labels correctly
with their connected components, additional steps are re-
quired. For this, it is convenient to identify the set of vertices
(labels) that may be encountered when processing the rest of
the current row (before the next call of FLATTEN).

Definition 11 Reachable vertices: These are the labels of
L in rightPos and their parents:

Vreachable = {L[pr] Uparent(L[p,]) ‘Dr€ righlPos}. (20)

4.1 Outline of Correctness Proof

Labels in leftPos of level(l) > 1 (created by a sequence of
non-propagating mergers) are not reachable in the current
row, which will be shown in Lemma 12. For these labels,
calling FLATTEN at the end of the image row is sufficient as
shown in Corollary 13. Therefore, the feature vectors of the
associated patterns are correctly determined. The correct-
ness of FLATTEN for compressing the forest structure, F,
represented within the merger table, MT, is shown in Theo-
rem 14.

Labels in rightPos of level(l) > 1 can only be created by
a combination of two merger patterns, one in /eftPos and one
in rightPos as shown in Lemma 16. In this case, Lemma 18
shows that the root will always be encountered before the
end of the image row. Therefore, by storing the stale label
on the stale label stack, SLS, enables the additional lookup
to be deferred, while still associating the accumulated data
with the correct connected component (Theorem 20). Fi-
nally, it is shown in Theorem 21 that any resulting labels of
level(l) > 1 are also reduced to level 1 by FLATTEN.

These show that the results of SLCCA are correct.

4.2 Non-propagating Mergers

Since each connected component is represented by a tree in
F, the arguments given in the following sub-sections of this
proof refer to a single connected component.

A non-propagating merger has Lc < Laorp, SO Laorp 1S
made a child of L¢, increasing level (Laop) by 1.

Lemma 12 After a non-propagating merger, only the root
label, L¢, is reachable.

Proof For La,p to be reachable, it must be connected to
a position in rightPos through the pixels that have already
been processed. This requires La,-p < Lc which contradicts
the requirements of a non-propagating merger. Therefore
La,rp is not reachable [1]. O

A sequence of two or more non-propagating mergers
will result in stale labels in leftPos (see Figure 3(b)). How-
ever, none of these will appear in the neighbourhood before
the end of the image row.

Corollary 13 Delaying the FLATTEN operation until the
end of the row will not affect the assigning of correct labels.

When moving to the start of the next row, leftPos be-
comes rightPos so all of the labels in the current row be-
come reachable again. Therefore FLATTEN must reduce the
maximum level of a label to 1.

Theorem 14 The FLATTEN operation as described in Algo-
rithm 5.4 results in a forest structure F, where each rooted
tree is of height < 1.
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Fig. 5 A sequence of 3 labels followed by 3 propagating merger pat-
terns. Arcs recorded after the last pixel of the current row is processed.
The solid arrows represent the arcs pushed onto stack FS which are
used for FLATTEN. The dotted arrows represent the arcs stored in
merger table M.

Proof Each non-propagating merger pattern increases the
level of the vertex associated with label Ly,,p by one. Since
the labels of successive non-propagating mergers are strictly
decreasing (Lc < Laorp), €ach successive merger grows the
tree adding a new root vertex. Therefore revisiting the merg-
ers in reverse order will follow the vertices of a sequence
of non-propagating mergers in order from the root to leaf,
as illustrated in Figure 5. This is facilitated by pushing the
non-propagating mergers onto a stack, F'S, as they occur,
saving Laop aS Lygy and L¢ as Ly, respectively. Popping
the pair of labels off the stack performs the reverse scan
from root back to the leaves. If level (L) < 1 then assign-
ing MT[Lyyax] := FIND(Ly;,) will make level(Ly,,) = 1 for
each iteration within Algorithm 5.4.

As a result of the reverse scan, level(Ly,) < 1 for non-
propagating mergers. It will be shown in Theorem 21 that
this is also true for stale labels following a propagating
merger (referred to as reachable stale labels).

Consequently, level(v) < 1V v € V(F,) before process-
ing the next line. a

Since non-propagating mergers can result in trees requir-
ing the FLATTEN operation, an obvious question is “why not
make all mergers propagating mergers?”, i.e. to always se-
lect Lsorp as the root of a merger. As demonstrated in [1],
this does not prevent the building of trees of height greater
than 1, and since it is not known in advance which ver-
tices will have their level increased, such a scheme would
require all mergers to be stacked for checking, not just non-
propagating mergers.

4.3 Propagating Mergers

After a propagating merger (Laop < Lc), the label L[C] is
still reachable, and its level will be increased by 1. If
level(L[C]) > 1 then L[C] becomes a reachable stale label. In
contrast to stale labels resulting from non-propagating merg-
ers, reachable stale labels can appear in the neighbourhood
n of p, before the end of the current image row. The fol-
lowing will investigate how a reachable stale label can be
created.

Theorem 15 The labels resulting from a merger from more
than one row previously will be reduced to the root label
before the current row.

Proof FLATTEN will reduce the maximum level of a la-
bel to level 1 at the end of a row (theorem 14). In the ab-
sence of additional mergers, when scanning the following
row FIND(L|[C]) will perform the lookup, returning the root
label. O

Lemma 16 A reachable stale label can only be created by
a non-propagating merger in rightPos followed by a propa-
gating merger in leftPos.

Proof The level of a label can only increase as a result of
a merger. Therefore at least two mergers are required to
make a reachable label stale. From Theorem 15, these merg-
ers must have occurred in the previous W scanned pixels,
where W is the image width, i.e. in leftPos or rightPos.
From Lemma 12, the label increased by a non-propagating
merger is not reachable, therefore to create a reachable stale
label, any mergers in /eftPos must be propagating mergers.
In a sequence of such mergers, each merger links L¢ to the
root label so successive propagating mergers do not increase
the height of the tree (see Figure 3(a)). Similarly, from a
propagating merger in rightPos, only the root label is reach-
able. A sequence of one or more non-propagating mergers in
rightPos will only provide a reachable label of level(v) < 1
(Theorem 14). Therefore, the only way to get a reachable
label with level > 1 is through a non-propagating merger in
rightPos followed by a propagating merger in leftPos. O

Two examples of such mergers are shown in Figure 6.
On the previous row, labels /; and /, merge, which makes
level(l,) = 1. Then, the propagating merger between Iy and
Iy in leftPos results in level(l,) = 2. Note that this also re-
quires Iy < /1 so that the level of , is increased. The single
lookup of [, at position p, results in assigning
L, = FIND(l,) = [;, which is a non-root label, rather than
the root /.

Definition 17 Bridge patterns: A bridge pattern is a com-
ponent segment in which an object label appears more than
once in the same image row separated by background pixels.
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Fig. 6 Two examples of images containing stale label /. A non-root
label is assigned to L, , because a stale label is in the neighbourhood.

A reachable stale label requires a bridge pattern between
the merger in /eftPos and the merger in rightPos as is seen
in Fig. 6.

4.4 Feature Vector Accumulation of Reachable Stale Labels

To determine the root vertex of reachable stale labels, a max-
imum of two lookups are necessary, which are distributed
to two different positions in the image (in Algorithms 5.1
line 20 and 5.3). It is, therefore, necessary to show that for
every possible image pattern which contains a reachable
stale label, these two lookups are performed.

Lemma 18 The appearance of a reachable stale label I,
in the neighbourhood Ly of the current pixel is always fol-
lowed by the appearance of | = parent(l;) in rightPos be-
fore the end of the current row.

Proof From Lemma 16, a reachable stale label in Ly im-
plies a non-propagating merger pattern in rightPos, between
I, and I;. Since I} < b, I} = parent(l,), and /; will have
been written to the labelled image, L. During the ongoing
scan, label /; will therefore appear in L[C]. O

The stale label stack, SLS, is used for caching the stale
label while waiting for its parent to appear in the neighbour-
hood. The stack is necessary, because the stale label may not
necessarily be in the neighbourhood when its parent appears.

Lemma 19 A stack is sufficient for searching for the parent
of a stale label.

Proof Consider the case where a different stale label [ is
encountered before the parent of the current stale label /; is
found i.e. parent(l;) has not yet been encountered. There-
fore, there is a path in visited between [; on the left of I,
and parent (1) on the right of /. To become a stale label, /,
requires an earlier label on each side (Lemma 16): /;.f; and
Lyight, such that lj. ¢ < lyign = parent(ly) < 1. Since I; ap-
pears on both sides of this group, this implies either Iy < I, f;
or Iy = lj.f;. This requires parent(l;) < parent(l), therefore
parent(l}) cannot be in between I, and parent(l). So the
stale label [, must be resolved before /|, making a stack ap-
propriate. a

Theorem 20 The feature vectors of the pixels of a reach-
able stale label pattern are always associated with their con-
nected component.

Proof The use of the flag IsRoot enables every non-root la-
bel assigned to L, to be detected when the feature vector
is updated in the data table DT. Since IsRoot indicates that
the label is stale, temporarily buffering the feature vector
and recording the label in SLS (Algorithm 5.2 line 50), en-
ables the feature vector to later be combined with that of the
root label. When the parent of the stale label in encountered
(Lemma 18), the data is combined with that of the correct
root label. Since the merger in rightPos is non-propagating
(Lemma 16) the stale label will not appear again beyond the
merger point. d

4.5 Flattening Reachable Stale Labels

When reaching the end of a row, there will be no instances of
the previously stale label in /eftPos, because the stale label
will have been looked up returning its parent. The parent of
the stale label may have been propagated into the label im-
age, L. Since level (parent (lg,.)) = 1 any subsequent non-
propagating mergers involving that component will increase
the level to 2 or more. Therefore, to ensure that the maxi-
mum height after calling FLATTEN is 1, it is also necessary
to include in the FLATTEN operation any reachable stale la-
bel assigned to p, (pushed onto SLS and resolved before the
end of a row).

Theorem 21 Pushing the reachable stale label onto the flat-
ten stack, F'S, when the reachable stale label is resolved is
sufficient to correctly flatten reachable stale labels.

Proof Non-propagating mergers following the event of re-
solving a reachable stale label are pushed onto the flatten
stack after the reachable stale label. Therefore, these non-
propagating mergers will be flattened first, ensuring that
FLATTEN on the reachable stale label will yield the root la-
bel. Any non-nested sequence of non-propagating mergers
will similarly be correctly flattened in the reverse order.
Next consider a nested sequence of reachable stale la-
bels, where an inner reachable stale label /;,,., is created af-
ter an earlier reachable stale label [,,,,., is created, but before
it is resolved. Since lyyser < linner (see the proof of Lemma
19) then if they are part of the same tree, /,,., Will be closer
to the root than l;,,,.,. Therefore, /,,;., must be flattened be-
fore liuer requiring it to be pushed onto the flatten stack
later. During the processing, l,,.r is encountered before
linner and will be pushed onto the stale label stack earlier
than /;,,.,. When the labels are resolved (Lemma 19), ;,,er
will be resolved first, and consequently be pushed onto the
flatten stack earlier than [, as required. O
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Fig.7 Stair pattern inducing the maximum number of non-propagating
merger operations [1].

4.6 Processing Complexity of SLCCA

New label, label copy and merger operations require con-
stant processing time per pixel. The processing time for
these is clearly linear in the number of pixels. Processing
stack F'S at the end of each image row by FLATTEN is data
dependent, but is bounded by the number of non-propagat-
ing merger operations. There can be a maximum of LWT_IJ
non-propagating merger patterns per line of W pixels, so the
processing time for this is also linear in the number of pixels.

The worst case pattern with regards to the total number
of uf-instructions [1] has an average of L%j merger patterns
per row and is shown in Figure 7. This clearly shows that
the algorithm from Section 3 scales linearly with the image
size.

4.7 Insights Gained

The proof of correctness of SLCCA demonstrates that per-
forming a FLATTEN at the end of each row is not only a nec-
essary condition of the improved context-based union-find,
but it is also a sufficient condition. In particular, this allows
the processing of sequences of non-propagating mergers to
be deferred until the end of each image row.

It has also identified a limitation of the OSP algorithm of
Bailey and Johnston [1]. There, reachable stale labels were
not considered, and as a result, were not included within the
FLATTEN operation at the end of each row, potentially lead-
ing to erroneous results in some circumstances. An exam-
ple of this is using CCA for blob counting, by incrementing
the count for each new label operation, and decrementing
the count for each merger operation. A reachable stale label
can result in an additional merger between already merged
components, giving an incorrect count. In SLCCA, the stale
label stack ensures the data from pixels with stale labels are
assigned to the correct feature vector.

5 Optimised DLCCA Algorithm

The problem associated with reachable stale labels may be
overcome if a second lookup can be performed. However, to
determine whether or not a label is a root, it is necessary to

either look up the IsRoot flag (from the data table DT) or
perform a second lookup within the merger table MT.

In this section, it is shown that if two lookups are made
within the merger table then it is only necessary to look up
the first pixel in a run of pixels. Consequently, the total num-
ber of lookups is less than the number of pixels in the image.

5.1 Properties of a Double Lookup

Lemma 22 A double lookup will always yield the root la-
bel.

Proof A stale label has level(l) > 1. Lemma 16 describes
the only way of achieving reachable stale labels, which is
through a specific combination of two mergers. The maxi-
mum height of a reachable tree is 2 levels. Therefore two
lookups are always sufficient to reach the root label. O

Theorem 23 Within a run of consecutive object pixels with-
in rightPos, the root label of all pixels in the run is the same
as the root label of the first pixel in the run.

Proof The labels within a run in rightPos can only be differ-
ent if there has been a merger (if there is no merger, the label
simply propagates). After a merger, any adjacent labels have
the same root. O

These imply that it is only necessary to look up the first
pixel in a run to find the root, and a double lookup is suffi-
cient. The first object pixel in a run will either be followed by
another object pixel or background pixel. It is not necessary
to look up background pixels, therefore the total number of
accesses to the merger table, M T, is less than the total num-
ber of pixels in the image, satisfying the single lookup per
pixel requirement (on average).

5.2 DLCCA Algorithm

The DLCCA algorithm (Algorithm 6) is similar to that for
SLCCA, with minor changes to UPDATENEIGHBOURHOOD,
and UPDATEDATASTRUCTURES. The double lookup means
that RESOLVESTALELABELS is no longer required, how-
ever FATTEN and READFINISHEDFEATUREVECTORS re-
main unchanged.

UPDATENEIGHBOURHOOD (Algorithm 6.1) has to be
modified to perform the double lookup at the start of a run.
During a run (on line 21), the label assigned to Lp on line 15
or 17 is repeated.

UPDATEDATASTRUCTURES (Algorithm 6.2) is simpler
than for SLCCA. It is no longer necessary to record the
IsRoot since the double lookup will always return the root.
Similarly, the stale label stack, SLS, is no longer required.
Label assignment, tree flattening, data table update, and
completed object detection remain the same.
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Algorithm 6 DLCCA algorithm.

Input: Binary image / of width W and height H
Output: A feature vector for each connected component in /

1: fory=0toH —1do

2: forx=0toW —1do

3 UPDATENEIGHBOURHOOD > Algorithm 6.1
4: UPDATEDATASTRUCTURES > Algorithm 6.2
5 end for

6 FLATTEN > Same as Algorithm 5.4
7: end for

8: READFINISHEDFEATUREVECTORS > Same as Algorithm 5.5

Algorithm 6.1 UPDATENEIGHBOURHOOD
9: if I[A] then

10: LADrD = Ll;

11: else

12: LADrD = L;k
13: end if

14: if I[B] AI|D] then
15: Lg = L;X

16: else

17: LB = LE

18: end if

19: if I{C] then

20:  if /[B] then

> Select La,p
> Next value of Ly

> Next value of Lp

> Propagate new label into next neighbourhood

> Part of a run of consecutive pixels

21: Lc:=Lp > Repeat latest label
22:  else

23: Lc:=MT[MT|L[C]]] > Double lookup of start of run
24:  endif

25: else

26 Lc:=0 > Lookup of background is unnecessary
27: end if

Algorithm 6.2 UPDATEDATASTRUCTURES

28: if I[p] then
29: if ~I[A] A—I[B] A—I[C] A—I[D] then

> New label operation

30: L,, = newLabel > (Lp, < LabelFIFO)
31 MTI[L, ] =Ly, > MAKESET
32: DTI[Lp| :=1FV(px)

33:  else > Merger operation: UNION
34. if (I[A] Vv I[D]) A\ ][C] A Lporp # Lo A Laorp # L[C] then

35: if La,p < Lc then > Propagating merger
36: Luin = Laorp

37: Lo = Lc

38: else > Non-propagating merger
39: Lm,‘,, = LC

40: Linax = Laorp

41: FS.PUSH (Lyin, Linax) > Stack labels for FLATTEN
42: end if

43: Ly, = Lyin

44: MT [Linayx) = Linin

45: DT [Lyin) = DT [Lyyin] © DT [Lipax] o IFV (pyx)

46: DT [Lypax] =0

47: else > Label copy operation
48: Ly, :==POSMIN(Lorp,Lp,Lc)

49: DT|L,,):==DT[L,]oIFV (py)

50: end if

51:  endif

52:  LastLine[Lp ] =y > For detecting completed F'V's
53: else

54: L, =0 > Background pixel
55: end if

56: Lipy] =Ly, > Save label for processing next row

time |t4lt—3lt—2lt—1| t |t+1|
MT |A4,|4,|C |G, |E |E,
lookup [1-1{1-1{3-2[2-2|3-2|2-2

MT
write

2-1

Neighbourhood at time ¢
(resulting in a merger)

Fig. 8 DLCCA race condition. The merger in cycle ¢ is written to MT
in cycle ¢+1. The second lookup of E looks up the same label in cycle
t+1.

The fact that only the first object pixel in a run needs
to be looked up implies that the label image L may be com-
pressed using run length encoding. DLCCA therefore unifies
pixel-based processing with run-based processing methods,
since any subsequent processing can be done on runs. For
example, it is similar to He et al.’s CCL algorithms [12,
11] which use run length encoding to optimise the second
(relabelling) pass, and in [11] for feature extraction (Euler
number). However, DLCCA differs from Trein’s single pass
run length algorithm (RLSP) [32] in that it still processes the
neighbourhood one pixel at a time, whereas RLSP processes
one overlap between runs in each clock cycle.

In the worst case (with alternating object and back-
ground pixels), there is no speed advantage of run-based
processing, although it can reduce the processing for more
typical images at the expense of more complex processing
logic. However, unless the image is streamed in at more than
one pixel per clock cycle, then there is limited real advan-
tage.

5.3 Implementation Issues of DLCCA

In hardware, each lookup requires a clock cycle. The two
lookups can be pipelined, to ensure that the root label is
loaded into neighbourhood window. Pipelining the second
lookup is possible because the following pixel does not need
to be looked up (it is either a background pixel, or part of a
run).

However, pipelining can create a race condition where
the label being looked up is updated in MT in the same
clock cycle as the second lookup, as illustrated in Fig. 8.
At time ¢, the merger between A and C links label 2 to la-
bel 1. With pipelining, this is written to the merger table in
clock cycle t+1. In parallel with this, pixel E is looked up in
the merger table in cycles ¢ and #+1. The first lookup (at ¢)
looks up label 3 and returns 2. The second lookup (at #+1) is
of label 2, which would return the old root, label 2, because
the merger table has not been updated from merger until the
end of 7+1. For correct operation, this requires the hardware
for MT to perform a write-before-read, or have bypass logic
constructed to read the new value being written.
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6 Comparison and Discussion
6.1 Evaluation Method

Modern CCA and CCL algorithms are often tailored to the
cache hierarchy of general-purpose processors (GPP) [3,11,
19] which consist of several levels of on-chip and off-chip
memory. For such processors, the average number of clock
cycles to process a pixel of a random image is a meaning-
ful metric to compare algorithms [4]. However, the suitabil-
ity of a CCA or CCL algorithm to a hardware architecture
depends on the interaction of the algorithm with the basic
building elements of the technology used and the arrange-
ment of these elements. The freedom to arrange the basic
building elements of the hardware device facilitates the use
of parallelism and helps to reduce processing or I/O bottle-
necks.

The number and speed of lookup operations are crucial
for carrying out CCA and CCL, as discussed in the intro-
duction. Unlike in a GPP, hardware architectures realised
on an ASIC or FPGA do not have a fixed memory model;
the three available memory types on-chip registers, on-chip
memory and off-chip memory can be arranged and connected
to make the best use of lookup operations and to provide
data at the exact time they are required. The bandwidth of
on-chip registers and memory is significantly higher and the
latency is significantly lower than off-chip memory. There-
fore, SLCCA and DLCCA are designed to fit completely in
on-chip registers and memories, which are limited for cur-
rent FPGA devices.

Unlike in a cache hierarchy, where the cost of a read or
write operation depends on the hierarchy-level, the FPGA
on-chip memory model provides random read and write op-
erations at constant cost. Therefore, the total number of
memory operations required to process an image provides
a good estimate on how suitable a CCA or CCL algorithm is
for a hardware architecture.

To compare variants of CCA or CCL algorithms with
different numbers of passes, different scan modes and dif-
ferent set merging algorithms, the number of memory access
instructions is considered.

Definition 24 Memory access instruction: A memory acc-
ess instruction (MAI) is a single read access from or a single
write access to an indexed data structure.

In particular, the state-of-the-art CCA and CCL algo-
rithms are examined with regards to

— total number of memory accesses,
— degree of parallelism and
— required memory resources

to process a stream of binary pixels.

# Memory access instructions per pixel

0 20 40 60 80 100
Object pixel density [%]

[ MT Merger Table
[ DT Data Table
21 I Binary Image

[ FS Flatten Stack
[ L Labelled Image
[ LabelFIFO

Fig. 9 Memory access instructions (MAIs) on each data structure of
DLCCA for processing 512x512 images with different object pixel
densities.

6.2 MAIs for DLCCA

To evaluate and compare the state-of-the-art CCA or CCL
algorithms, each algorithm was implemented in C++ or
Java. The code was instrumented to count the number of
MALIs. Since CCL algorithms are only concerned with out-
putting a labelled image, feature vector collection was also
added to their implementations.

Figure 9 shows the number of MAIs DLCCA requires to
extract the feature vectors of the components in a random
512x512 pixel image as a function of object pixel density.
Each colour in Figure 9 depicts the number of MAIs on one
of the data structures; the upper bound shows the total num-
ber of MAIs. Read and write accesses to the labelled image,
L, are also in parallel using dual-port memory. Although the
number of MAIs required for L could be reduced by run-
length encoding, these accesses are in parallel to the other
data structures, so in practise little would be gained. DLCCA
is designed to access all data structures in parallel (except
for the flatten stack, F'S, during FLATTEN at the end of each
row). Therefore, the maximum number of MAISs carried out
in parallel depend on the maximum number of MAIs on a
single data structure plus the MAIs required on F'S.

The label and the feature vector associated with the cur-
rent pixel, L, can be stored in registers, with the other fea-
ture vectors stored in on-chip memory. As the label L[C]
can be from a different connected component than Lu,,p,
for every pixel, the parent label of L[C] must be looked up.
DLCCA performs a double lookup (i.e. M[M[L[C]]], in suc-
cessive clock cycles) to find the root label. Since the root la-
bels of consecutive object pixels are all the same, two look-



18

Michael J. Klaiber et al.

ups are always sufficient to determine the label to assign
to all pixels of a run. Therefore at most two MAIs on the
merger table MT are necessary for a run of consecutive ob-
ject pixels.

The labels of Ls,p and Lg are derived from the labels
of L[C] and L[py] of the previous position. It is, therefore,
sufficient to store them in registers. As the LabelFIFO is
only accessed when new label patterns or completed con-
nected components are detected, the number of MAIs on
the Label FIF O is highest around an object pixel density of
40%. DLCCA does not store a fully labelled image, therefore
L is only accessed for labels assigned to the previously pro-
cessed image row. For each pixel in the input image / there
is one read access on L to retrieve the pixel coming into the
local neighbourhood, and one write access to store the provi-
sional label assigned to a pixel. For consecutive object pixels
the feature vector associated with label L, is cached in reg-
isters [18] which optimises the number of MAIs on the data
table (DT) having the highest number of MAIs at an object
pixel density of around 50%. The number of MAIs on the
flatten stack (F'S) is highest for images with a stair pattern
which have an object pixel density of 40%.

6.3 Evaluation of MAIs

To compare the number of memory access instructions of
CCA and CCL algorithms, the following cost metric is ap-
plied:

— Successive reads from the same position of a data struc-
ture can be buffered in a register and are, therefore,
counted as one MAI

— Successive writes to the same position of a data structure
can be cached in a register and are, therefore, counted as
one MAI

— Receiving the input image / as a stream (as in a hardware
implementation) is not a memory access instruction per
se, i.e. requires zero MAIs. However, for a fair compar-
ison, these read accesses are counted as one MAI each
(effectively streaming from memory).

This metric does not try to show which CCA algorithm runs
the fastest on a general purpose processor, but indicates the
potential speed of a CCA or CCL algorithm when realised
as a hardware architecture. In fact, the results of [3] show
that LSL requires the smallest number of processing cycles
per pixel on Intel and ARM processors.

Figure 10 represents the total number of MAIs for ex-
tracting the feature vectors of the connected components in
arandom 512x512 pixel image of by DLCCA, SLCCA [18],
OSP [1], AR [22], RLSP [32], CAM [16], LSL [19], HCS
[11], CT [5] and Rosenfeld’s classical algorithm [26] apply-
ing QuickUnion (RQU) (see Table 1 for algorithm abbrevia-
tions).

CT »~— SLCCA ~— LSL

i

e RQU e DLCCA o ¢ HCS
12} oo OSP  +—+ CAM o o RLSP[]
Lol ea AR

# Memory access instructions per pixel

0 20 40 60 80 100
Object pixel density [%]

Fig. 10 Comparison of the number of memory access instructions re-
quired by CCL and CCA algorithms for processing 512x512 images
with different object pixel densities.
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Fig. 11 The number of memory access instructions required for pro-
cessing worst case images (chess board, stairs, feather pattern) and
natural images from the SIPI database [33] and from the Berkley
BSDS300 dataset [23]. All images are 512x512 pixels.

o

RLSP, HCS and LSL encode and process runs of pixels
from the input image, which explains the large difference of
MAIs between an image with object pixel density around
50% and an empty or filled image. For the algorithms HCS,
CAM, RLSP and LSL most MAIs are required when pro-
cessing random images between 48% and 55% object pixel
density.

The number of MAIs for SLCCA and OSP is almost
equal since the basic processing principle is very similar (al-
though OSP does not use relabelling). AR is also similar to
SLCCA and DLCCA, but requires one additional lookup per
pixel for the translation table associated with aggressive re-
labelling. DLCCA is an advancement of SLCCA and requires
up to 25% fewer MAIs due to caching lookups. The number
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of MAIs of DLCCA increases with the object pixel density
until 43% object pixel density. Above 43% the number of
MAISs decrease again.

The bar diagrams in Figure 11(a) through (c) show the
number of MAIs required for processing worst case images
with chess board pattern, stair pattern and feather pattern
[1]. In the scope of the explored algorithms, the chess board
pattern with a granularity of one pixel has been shown to
require the maximum number of MAIs for LSL, HCS, CT,
RLSP and RQU. Although DeBock and Philips [6] identi-
fied a tree pattern as the worst case pattern for HCS with
respect to the run time, our analysis shows that the chess
board pattern requires more MAIs. The stair pattern from
Figure 7 requires the maximum number of MAIs for OSP,
CAM, SLCCA and DLCCA. For AR, all of the mergers as-
sociated with the stair pattern are managed by relabelling of
objects from one row to the next. The merger table (and flat-
ten stack) is only required when both component segments
already have a label on the current row, which can only oc-
cur with a bridge pattern. This requires an image such as the
feather pattern to induce the maximum number of MAIs for
AR [22].

Figure 11(d) and (e) show the average number of MAIs
required for processing the more than 300 natural reference
images from the USC-SIPI database [33] and the Berkley
BSDS300 dataset [23]. For the comparison, these images
are scaled to a size of 512x512 pixels and binarised with a
global threshold value determined by Otsu’s algorithm [25].
In general, the methods which make use of run-length en-
coding are able to benefit from such images through their
ability to access complete runs of pixels with a single MAI.

To compare the minimal guaranteed processing time, the
worst case pattern of each algorithm is used for a compar-
ison. Table 4 lists the total number of MAISs per pixel (the
sum of MAIs on all memory structures) for processing the
worst case patterns.

CAM requires the fewest number of MAIs due to its
content-addressable memory. Every update of the content-
addressable memory is counted as a single MAI, even if
multiple locations in the memory with the same label are up-
dated. OSP, AR, SLCCA and DLCCA have a similar range
for the sum of MAIs, as these methods are all based on
OSP. AR requires more MAIs than OSP due to the additional
translation table. SLCCA requires more MAIs than OSP be-
cause the data table is continuously searched for finished
feature vectors. DLCCA requires fewer MAIs than OSP as it
caches labels of continuous runs, whereas OSP requires one
lookup for each pixel to determine a label’s parent.

HCS, RLSP and LSL perform run-length encoding of the
input images before processing the images. The maximum
number of MAIs for those algorithms is required when pro-
cessing the chess board pattern which essentially is a series

of runs with a length of a single pixel. Therefore, run-length
encoding does not gain an advantage for the worst case.

RQU assigns up to [W x H /4] provisional labels when
passing the input image the first time. Merging these provi-
sional labels at the end of the image and assigning the final
labels to L in a second pass constitute the difference in com-
parison to CAM.

CT traces the contour of each connected component in
the input image and, therefore, requires multiple read and
write operations which are strictly sequential for each input
pixel.

6.4 Evaluation of Parallelism

This sub-section evaluates the parallelism of the examined
algorithms. Some algorithms (especially software algo-
rithms) accomplish parallel processing by means of static or
dynamic scheduling on a superscalar general-purpose pro-
cessor. This scheduling cannot be identified from the algo-
rithm’s description alone. A good measure for software al-
gorithms is, therefore, the cycles-per-pixel (cpp) measure es-
tablished by Cabaret and Lacassagne [3], as it relates to an
algorithm executed on a specific processor. The parallelism
of those algorithms is, therefore, implicit and dependent on
the hardware the algorithm is run on.

To compare parallelism for a hardware architecture, such
as an FPGA implementation, an explicit description of the
hardware architecture and a mapping of the algorithm to it
is necessary. This is the case for the following algorithms:
OSP,RLSP, AR, SLCCA, DLCCA and CAM. Therefore, only
these are discussed with regards to parallel MAIs in Ta-
ble 4. Other algorithms may well contain pipelined or par-
allel MAIs, however these are dependent on the particular
processor used making their analysis beyond the scope of
this evaluation.

AR’s additional lookup in the translation table operates
in parallel to the other memory structures and, therefore,
does not diminish the performance. Similarly, scanning the
data table by SLCCA and DLCCA to detect completed com-
ponents makes use of a second memory port enabling it to
operate in parallel.

CAM requires one parallel MAI per pixel due to the use
of a content-addressable memory. Whenever two compo-
nent segments merge, the provisional label is immediately
replaced by the representative label, so no further process-
ing is required.

In contrast, OSP, AR, SLCCA and DLCCA require addi-
tional MAIs at the end of each row for flattening stale la-
bels from non-propagating mergers. This overhead is pro-
portional to the number of mergers cached on the flatten
stack (FS). As indicated earlier, AR caches fewer mergers
as a result of the relabelling process, with a worst case over-
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Table 4 Comparison of MAIs per pixel for the worst case patterns.

Algorithm  Worst case pattern ~ # MAIs [normalised]
sum parallel sum parallel

CAM stairs all3 4.39 1.00
DLCCA stairs stairs 4.99 1.19
OSP stairs stairs 5.39 1.19
SLCCA stairs stairs 5.59 1.19
AR feather  feather 5.81 1.06
RLSP chess chess 7.49 1.99
HCS chess N/A 7.49 N/A
RQU chess N/A 7.49 N/A
LSL chess N/A 8.00 N/A
CT chess N/A 11.97 N/A

head of 1 in 16 (approximately 6.3%). OSP, SLCCA and DL-
CCA have a worst case overhead of 1 in 5 (20%). However,
OSP also has an additional sequential overhead of process-
ing completed components at the end of the frame. With AR,
SLCCA and DLCCA, label reuse requires identifying com-
pleted components on the fly.

This suggests that by making the worst case image more
complex, the number of MAIs required for FLATTEN could
be reduced. In examining the stair pattern, a new label is as-
signed to a component segment, only for it to subsequently
be merged with an existing segment. If the allocation of a
new label could be deferred, then the merger would be un-
necessary. Such a change would also require modifying the
row buffer, to make it run-length encoded, rather than stor-
ing every pixel. This would reduce the worst case overhead
from 1in 5 to 1in 8 (or 12.5%). For typical images, however,
the number of non-propagating mergers is relatively low and
the overhead of the FLATTEN operation is negligible (see F'S
in Figure 9).

While RLSP can gain on images with large blobs (with
long runs), in the worst case, with alternating sequences of
individual pixels from the chess board pattern, run-length
coding does not help. RLSP has serial dependencies within
the matching process that cannot easily be pipelined, result-
ing in an increased parallel MAI score.

6.5 Evaluation of Resources

While CAM gives the best performance in terms of MAIs,
this comes at a heavy cost in terms of resources. Rather than
implementing the provisional label cache, L, as a simple
memory, the need to replace every instance of an old label
during a merger requires the buffer to be implemented using
registers. On an FPGA, this is implemented as a shift register
with a multiplexer between each stage. While this situation
may be improved by implementing the content addressable
memory in VLSI, it would still require significantly more
logic than a simple memory-based row buffer.

The main limitation of OSP is that it must maintain data
structures (DT and MT) that are proportional to the image
area [22]. AR improved this by relabelling each row from L
as it is processed, reducing the size of the data structures
to the width of the image. SLCCA reduced the total on-
chip memory required with improved memory management
through label recycling (with augmented labels) [18]. This
avoids the need for the additional translation table required
by AR, making it better suited for hardware implementation.
DLCCA improves the number of MAIs for finding the rep-
resentative (root) labels (access to MT).

The major advantage of RLSP over the other run-based
algorithms (such as HCS or LSL) is that it is a true single-
pass algorithm. This allows the memory used by finished
connected components to be recycled for subsequent ones.
The memory requirements are, therefore, proportional to the
image width.

7 Conclusions

Single-pass CCA algorithms are a relatively new class of
algorithms designed and optimised for processing streamed
image data using an embedded or hardware architecture, by
extracting component feature vectors directly from the pixel
stream. Real-time operation necessitates processing stream-
ed pixel data at one pixel per clock cycle.

This paper provides the first detailed algorithmic per-
spective of single-pass CCA algorithms identifying and dis-
cussing the implicitly used set merging algorithms. These
CCA algorithms have been examined and compared with
CCL in terms of the union-find algorithm used for manag-
ing object mergers. Through this analysis, single-pass CCA
algorithms have been unified with more conventional CCL
algorithms on an analytical basis.

It has been shown that many single-pass algorithms use
a single lookup variant of union-find. This variant is directly
based on the order in which UNION and FIND operations are
encountered in the context of processing a two-dimensional
image as a pixel stream. The FIND is replaced by a single
lookup, which is only valid for trees of height less than or
equal to one level. This requires an additional FLATTEN op-
eration to reduce the height of labels to at most level 1 (to
avoid stale labels) before any FIND (or UNION) is performed
on those labels. It is shown that a sufficient condition for this
is performing a FLATTEN at the end of each image row.

One of the key paradigms of single-pass algorithms is
the online resolution of mergers, enabling the feature vector
extracted from each component to be extracted and merg-
ed on the fly. The ability to defer the FLATTEN operation to
the end of each row significantly relaxes the sequential data
dependencies, enabling pipelined stream processing on an
FPGA at 1 pixel per clock cycle.
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The proof of correctness, and associated analysis, has
shown the circumstances that lead to stale labels, where ad-
ditional processing is required to ensure that data from each
pixel is correctly associated its corresponding connected
component. Although early work on single-pass connected
components analysis [1,22] had identified sequences of non-
propagating mergers as one instance of stale label creation,
more complex cases involving propagating mergers had not
previously been identified. From this insight, it may readily
be seen that some algorithms from the literature are either
incorrect in their operation (as described) or incomplete in
their description, for example [20].

Algorithm analysis has also shown that the issues asso-
ciated with stale labels can be avoided by using a second
lookup. This led to the DLCCA algorithm, which performs
the two lookups in successive clock cycles at the start of
each run of pixels. Pipelining the lookups in this way, and
only looking up the first pixel in a run, is shown to reduce
the overall number of memory accesses. It also provides a
unification between pixel based and run-length based algo-
rithms.

In analysing the operation of single-pass algorithms,
there is an obvious trade-off between processing speed and
resources. Jeong et al.’s algorithm [16] avoids the overhead
of flattening the trees at the end of each row, by immediately
removing all references to the old label. This makes it poten-
tially the fastest single pixel per clock cycle algorithm when
implemented in hardware. However, the cost of this is re-
placing the RAM based row buffer with a significantly more
resource intensive multiplexed shift-register. Ma et al.’s ag-
gressive relabelling [22] incurs a small overhead at the end
of each row for the FLATTEN, at the cost of additional re-
sources for the translation table (and an additional lookup,
although this can be pipelined). Klaiber et al. [18] reduce
this (and the associated memory required) at the cost of a
higher FLATTEN overhead.

It is hoped that by outlining the necessary and sufficient
conditions for correct operation, as well as the comparison
of the strength and weaknesses of existing CCA and CCL al-
gorithms this analysis would inspire further attempts at op-
timising the class of single-pass CCA algorithms.
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Code A functional Java implementation of the algorithm is published
under the following URL:
http://crisp.massey.ac.nz/code/DLCCA.zip
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