
i
i

“dissertation” — 2017/11/5 — 13:24 — page 1 — #1 i
i

i
i

i
i

Dissertation

A Parallel and Resource-Efficient
Single Lookup

Connected Components Analysis
Architecture

for Reconfigurable Hardware

Michael J. Klaiber

Author’s Edition

February 2017

i
i

“dissertation” — 2017/11/5 — 13:24 — page 2 — #2 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 3 — #3 i
i

i
i

i
i

Copyright ©2016–2017 Michael J. Klaiber

Permission is given for a copy to be downloaded by an individual for the purpose of
research and private study only. The document may not be reproduced elsewhere
without the permission of the Author.

This is the author’s version of the dissertation ”A Parallel and Resource-Efficient Single
Lookup Connected Components Analysis Architecture for Reconfigurable Hardware”.
The research work described in this document was completed April 30th 2016, submitted
to the first examiner for assessment and submitted to the Dean’s Office of Faculty 5:
Computer Science, Electrical Engineering and Information Technology of University of
Stuttgart, Germany on July 26th 2016. The examination date was December 13th 2016.
This version contains changes in content and format extending the version submitted to
University of Stuttgart.

3

i
i

“dissertation” — 2017/11/5 — 13:24 — page 4 — #4 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 5 — #5 i
i

i
i

i
i

Acknowledgements

This dissertation would not have been possible without the help and support of the
people around me. There are so many that it is not possible to mention everyone
here.

I am very thankful to Prof. Dr. Donald G. Bailey from Massey University in New
Zealand for his advice and feedback that greatly contributed to this work. Donald,
thanks for teaching me scientific thinking and scientific working. I want to express
my thanks to Prof. Lionel Lacassagne from for examining this dissertation. I also
acknowledge my supervisor from University of Stuttgart, S. Simon.

My thanks also goes to my colleagues from IPVS, the Crew: Silvia Ahmed,
Yousef Baroud, Dimitrij Gester, Jajnabalkya Guhathakurta, Jürgen Hille-
brand, Steffen Kieß, Wenbin Li, Xuxu Li, Mahdi Najmabadi, Lars Rockstroh,
Timo Schweizer, Kaicong Sun, Trung Hieu Tran, Zhe Wang and Marek Wroblewski
for all the fun we had during the last five years. It was a great pleasure working
with you.

I would also like to thank the University of Stuttgart and the German Research
Foundation (DFG) for funding my position as a Research Associate. My acknowl-
edgement also go to the German Academic Exchange Service (DAAD) for their
financial support of my research internship in New Zealand.

Many thanks to my parents, Elvira and Kurt Klaiber, and my sister, Susanne, for
always supporting me. Most of all I want to thank my loving girlfriend Ute, who
always encouraged me and was by my side.

Stuttgart, February 2017

Michael J. Klaiber

5

i
i

“dissertation” — 2017/11/5 — 13:24 — page 6 — #6 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 7 — #7 i
i

i
i

i
i

Abstract

Connected components analysis (CCA) is an essential step in image processing to
extract features such as the area or size of arbitrarily-shaped objects from binary
images. In this dissertation two dedicated hardware architectures performing CCA
tailored for reconfigurable hardware are presented: the first to process a single pixel
per clock cycle, single lookup CCA (SLCCA), and the second to process multiple
pixels per clock cycles, parallel SLCCA (PCCA). Both achieve a higher throughput
than the state-of-the-art architectures which process a single pixel or multiple pixels
per clock cycle. They also require fewer hardware resources, especially on-chip
memory resources. The memory reduction is achieved by processing an image
stream in a single pass without buffering an entire image in a frame buffer. This
is especially important as image sizes and frame rates are steadily increasing, e.g.
for new standards such as ultra-high-definition. Stream processing is particularly
efficient for processing pixel data generated by image sensors, as a stream of multiple
pixels provided in raster scan order is the standard output format of the majority
of state-of-the-art image sensors. To achieve a high processing throughput for
extracting feature vectors with CCA, reconfigurable hardware is used. This has the
advantage over most general-purpose processors that massive parallel processing is
possible and a guaranteed processing latency can be achieved.

SLCCA is optimised to the properties of the basic building blocks available in
reconfigurable hardware, therefore a single lookup per pixel is sufficient where other
state-of-the-art algorithms required a series of several lookups per pixel. The SLCCA
hardware architecture achieves a maximum throughput of 124 Megapixel/s and
a guaranteed processing latency of 160 µs, even for ultra-high-definition images
(UHD8k). The PCCA architecture processes multiple pixels of a binary image
simultaneously in the same clock cycle. PCCA makes use of spatial and temporal
parallelism by first dividing the image into several slices. The results of this first
step are feature vectors for each connected component in the image slices. The
connected components spanning slice borders consist of multiple feature vectors
which are combined by several processing stages arranged in a tree structure. PCCA,
therefore, achieves a maximum throughput of 6 Gigapixel/s.

7

i
i

“dissertation” — 2017/11/5 — 13:24 — page 8 — #8 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 9 — #9 i
i

i
i

i
i

Zusammenfassung

Connected Components Analysis (CCA) ist ein grundlegender Schritt in Bildverar-
beitungssystemen, der Eigenschaften wie die Fläche oder die Größe von Objekten
einer beliebigen Form aus binären Bildern extrahiert. In dieser Arbeit werden zwei
CCA Hardware-Architekturen, die auf rekonfigurierbare Hardware angepasst sind,
präsentiert: Die erste verarbeitet einen Pixel pro Taktzyklus – Single Lookup CCA
(SLCCA) – die zweite verarbeitet mehrere Pixel pro Taktzyklus – Parallel SLCCA
(PCCA). Beide erreichen einen höheren Durchsatz, als andere state-of-the-art Ar-
chitekturen, die einen bzw. mehrere Pixel pro Taktzyklus verarbeiten. Des Weiteren
benötigen beide weniger Hardware Ressourcen, insbesondere on-chip memory. Diese
Speicherreduzierung wird dadurch erreicht, dass Bilddatenströme in einem einzelnen
Durchlauf verarbeitet werden, ohne dass ein komplettes Bild zwischengespeichert
werden muss. Dies ist besonders wichtig, da Bildgrößen und Frameraten kontinuier-
lich wachsen, wie zum Beispiel bei neuen Standards wie Ultra-High-Definition. Das
direkte Verarbeiten von Bilddatenströmen ist besonders effizient, um Pixel-Daten
von Bildsensoren zu verarbeiten, da die Mehrheit der modernen Bildsensoren einen
Pixelstrom erzeugt, der aus mehreren Pixeln in Raster-Scan-Reihenfolge besteht.
Um einen hohen Durchsatz beim Extrahieren von Feature-Vektoren mit CCA zu
erzielen, werden rekonfigurierbare Hardware Bausteine eingesetzt. Im Vergleich
zu den meisten General-Purpose Prozessoren bietet dies den Vorteil einer hohen
Parallelisierbarkeit und einer garantierten Verarbeitungslatenz.

SLCCA ist auf die Eigenschaften der elementaren Bauelemente von rekonfigurierbaren
Hardware Bausteinen zugeschnitten. Dies ermöglicht eine Verarbeitung mit einem
Lookup pro Pixel, wo andere Algorithmen eine Abfolge von mehreren Lookups
benötigen. Die SLCCA Hardware-Architektur erreicht einen maximalen Durchsatz
von 124 Megapixel/s und eine garantierte Verarbeitungslatenz von 160 µs, sogar für
Bilder mit einer Auflösung in Ultra-High-Definition (UHD8k). Die PCCA Architektur
verarbeitet mehrere binäre Pixel gleichzeitig im selben Taktzyklus. PCCA macht
Gebrauch von räumlicher und zeitlicher Parallelverarbeitung, indem das Bild zuerst
in mehrere Bildstreifen aufgeteilt wird. Das Ergebnis dieses ersten Schrittes sind
Feature-Vektoren für jedes der Connected Components in den einzelnen Streifen. Die
Connected Components, die sich über mehrere Bildstreifen erstrecken, bestehen somit
auch aus mehreren Feature-Vektoren, welche durch die Verarbeitung in mehreren,
baumförmig angeordneten Prozessiereinheiten gleichzeitig zusammengefasst werden.
PCCA erreicht damit einen maximalen Durchsatz von 6 Gigapixel/s.

9

i
i

“dissertation” — 2017/11/5 — 13:24 — page 10 — #10 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 11 — #11 i
i

i
i

i
i

Contents

1 Introduction 15
1.1 Definitions of Connected Components Analysis and Connected Com-

ponents Labelling . 15
1.2 Image Processing Systems Applying Connected Components Analysis 17
1.3 Citations and Quotations . 18
1.4 Graph and Digraph Notation and Definition 18
1.5 Set Merging Algorithms . 20
1.6 Review on Classical CCL and Special Case CCL Algorithms for Image

Processing . 23
1.7 Evaluation and Categorisation of State-of-the-Art Sequential CCA

and CCL Algorithms for Image Processing 24
1.8 Evaluation and Categorisation of State-of-the-Art Parallel CCA and

CCL Algorithms . 27

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm 31
2.1 General Definitions . 32
2.2 Relation of Union-Find to SLCCA: The Set Merging Algorithm used

by SLCCA . 37
2.3 Algorithmic Description of SLCCA 37

2.3.1 Neighbourhood Patterns and Operations 37
2.3.2 Flattening Trees in the Union-Find Structure 41
2.3.3 Feature Vector Collection . 43
2.3.4 Non-root Label Selection . 44
2.3.5 Label Reuse . 45

2.4 Pseudocode of SLCCA . 47
2.4.1 Forward Raster Scan . 47
2.4.2 UpdateNeighbourhood . 47
2.4.3 UpdateDataStructures . 48
2.4.4 Flatten . 49
2.4.5 ResolveStaleLabels . 51
2.4.6 FindFinishedComponents . 52
2.4.7 Step-by-step Example of SLCCA 53

2.5 Experimental Results and Discussion 59
2.5.1 An Analysis of the Memory Access Instructions of SLCCA

and State-of-the-Art Algorithms 59

11

i
i

“dissertation” — 2017/11/5 — 13:24 — page 12 — #12 i
i

i
i

i
i

Contents

2.5.2 Comparison of the Memory Access Instructions of SLCCA to
State-of-the-Art Algorithms 65

2.6 Summary and Contributions of the SLCCA Algorithm to the State
of the Art . 69

3 Hardware Architecture of SLCCA 71
3.1 Design of the Hardware Architecture 74

3.1.1 Neighbourhood Context and Row Buffer 76
3.1.2 Label Selection and Image Component Association 77
3.1.3 Label Recycling and Feature Vector Collection 80
3.1.4 Stale labels . 87
3.1.5 Validation of the architecture 92
3.1.6 Validation of the implementation 94

3.2 Experimental Results and Discussion 96
3.2.1 Memory Requirements . 96
3.2.2 Benchmark . 100
3.2.3 Hardware Resources . 104
3.2.4 Comparison to Other Hardware Architectures 108

3.3 Summary and Contributions of the SLCCA Hardware Architecture
to the State of the Art . 112

4 PCCA - The Parallel SLCCA Algorithm 113
4.1 Parallel Labelling Process in PCCA 117
4.2 Parallel Union-find Operations in PCCA 119
4.3 Global Operations . 126
4.4 Partitioning of the PCCA Algorithm 127

4.4.1 Slice Processing Instance . 133
4.4.2 Coalescing Instance . 143

4.5 Summary and Contributions of the PCCA Algorithm to the State of
the Art . 153

5 Hardware Architecture of Parallel SLCCA 155
5.1 Image Distribution Unit . 155
5.2 Slice Processing Unit . 157

5.2.1 Local and Global Component Association Units 159
5.2.2 Feature Vector Collection Unit 159
5.2.3 Neighbourhood Context Unit 160
5.2.4 Label Selection Unit . 162

5.3 Coalescing Unit . 163
5.3.1 Arbitration of Global Operations 163
5.3.2 GO Processor Unit . 166
5.3.3 Global Label Management Unit 168

12

i
i

“dissertation” — 2017/11/5 — 13:24 — page 13 — #13 i
i

i
i

i
i

Contents

5.4 Resource Sharing within the PCCA Architecture 169
5.4.1 Determination of Maximum Throughput for Real-Time Pro-

cessing . 170
5.5 Experimental Results and Discussion 172

5.5.1 Comparison to Other Parallel Hardware Architectures 178
5.6 Summary and Contributions of the PCCA Hardware Architecture to

the State of the Art . 180

6 Demonstration of the PCCA Architecture 181
6.1 A Real-time Process Analysis System based on FPGA Hardware

Acceleration . 182
6.2 Feature Vector Evaluation and Interpretation 185
6.3 Case Study: Detection of Collisions in Atomisation Processes 187

7 Conclusion 191

Bibliography 201

13

i
i

“dissertation” — 2017/11/5 — 13:24 — page 14 — #14 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 15 — #15 i
i

i
i

i
i

1 Introduction

In this chapter, basic ideas and terminology related to connected components analysis
(CCA) are introduced and state-of-the-art algorithms are presented and discussed.
Section 1.2 emphasises the relevance of the research topic by pointing out the variety
of fields it can be applied in.

Section 1.1 points out the difference between CCA and CCL and defines the properties
of both problems concisely. The conventions for quotations and citations in this
dissertation are explained in Section 1.3. The notation and definition of graphs and
digraphs used in the following chapters are introduced in Section 1.4. Section 1.5
defines and introduces the set merging problem and state-of-the-art set merging
algorithms. In Section 1.6 historical and special cases of CCL algorithms are reviewed.
Section 1.7 to 1.8 introduce and discuss sequential and parallel state-of-the-art CCA
and CCL algorithms. A CCA algorithm and hardware architecture which process
one pixel per clock cycle is presented in Chapter 2 and Chapter 3. In Chapter 4
and Chapter 5 an algorithm and a hardware architecture for further acceleration
of CCA by parallelisation is presented. The case study in Chapter 6 applies the
previously presented CCA hardware architecture on a problem from mechanical
process engineering: the detection of fast droplet collisions in atomisation processes.

The content in this chapter marked by single quotation marks according to the
convention from Section 1.3 is mainly from [67].

1.1 Definitions of Connected Components Analysis and
Connected Components Labelling

The usage of the term connected components labelling and its definition is quite
consistent in the academic literature, whereas connected components analysis varies
in terms of both, terminology and problem definition.

Rosenfeld et al. [102] define connected components labelling as the “[c]reation of a
labeled image in which the positions associated with the same connected component
of the binary input image have a unique label.” Shapiro et al. [112] define CCL as
an operator whose “input is a binary image and [. . .] output is a symbolic image in
which the label assigned to each pixel is an integer uniquely identifying the connected
component to which that pixel belongs.”

15

i
i

“dissertation” — 2017/11/5 — 13:24 — page 16 — #16 i
i

i
i

i
i

1 Introduction

2D representation of
binary input stream

Output: Feature vectors

xmin ,xmax

ymin , ymax

area((0, 1
0, 0

2((1, 5
0, 3

8((

Feature
extraction

Input: Binary image stream

Figure 1.1: Definition of input and output data for connected components analysis.

There is no consensus on the definition of connected components analysis in the
academic literature. It is often used interchangeably with CCL [37, 40]. A more
extensive definition is given by Shapiro et al. [112]: “Connected component analysis
consists of connected component labelling of the black pixels followed by property
measurement of the component regions and decision making.” The definition for
connected components analysis used in the following chapters is more general, taking
the thoughts expressed in [37,40,112] into account.

Definition 1. Connected components analysis derives one feature vector of each
connected component in a binary 2-D input image. A feature vector of a connected
component is an n-tuple composed of functions of the component’s pattern [45].

The derivation of feature vectors does not necessarily require a fully labelled image.
Figure 1.1 depicts an example for the input and output data of connected components
analysis. The input for both CCL and CCA is a binary 2-D image. CCL assigns
the same label to all pixels of one connected component. The output is, therefore, a
2-D array of labels - a labelled image. CCA derives the feature vector for each of
the connected components in the input image, such as the bounding box or area of
each connected component. Feature vectors can also be extracted from the output
of CCL. However, this is an additional step which is not a part of CCL.

In Section 1.2, it is shown that CCA is a relevant processing step in many modern
image processing systems. An improvement of this method is, therefore, beneficial
for all of these systems.

16

i
i

“dissertation” — 2017/11/5 — 13:24 — page 17 — #17 i
i

i
i

i
i

1.2 Image Processing Systems Applying Connected Components Analysis

[124]

(a) (b) (c) (d)

[87]

fr
e
e
im

a
g
e
s.
co
m
/k
il
o
k
il
o
-5
1
3
5
6

(e) (f) (g) (h)

Figure 1.2: Fields for the application of CCA or CCL. (a) Drive assistance, (b) license
plate recognition, (c) traffic sign recognition, (d) aviation, (e) surveil-
lance, (f) image segmentation, (g) medical imaging, and (h) character
recognition.

1.2 Image Processing Systems Applying Connected
Components Analysis

Connected components analysis is a fundamental processing step in many image
processing systems. Figure 1.2 shows examples of the wide spectrum of applications
making use of CCA. In automotive image processing systems, CCA is used as a
basis for driving assistance systems [4, 22, 23, 34, 35, 38, 61, 78, 79, 84, 89, 103, 108],
for license plate recognition [6, 29, 60, 81] and traffic sign recognition [32, 135]. In
aviation, CCA is applied in horizon detection [24], navigation [36, 41, 101], object
tracking [104] and image-based forest fire detection [137]. CCA is also a fundamental
process for intelligent surveillance applications [1, 16,123]. In image segmentation,
CCA is used to support the process of distinguishing pixels which belong to different
regions of the input image [63]. Examples for the application of CCA in medical
imaging are the detection of lesions [114] and kidney stones [30], angiography of
retina images [94], brain tumour segmentation [59,92], computer-aided diagnosis [46]
and microscopy [121]. In optical character recognition (OCR), CCA is used to select
the connected components belonging to a character [21], character extraction and
for filtering connected components depending on their properties for the character
recognition step [25].

17

i
i

“dissertation” — 2017/11/5 — 13:24 — page 18 — #18 i
i

i
i

i
i

1 Introduction

1.3 Citations and Quotations

This dissertation contains content which has already been published in or submitted
to journals and conference proceedings. Content of pre-publications1 are marked by
the qualifiers introduced in the following. Text in single opening quotation marks
(‘) followed by a reference, indicates that this text has been pre-published in, or
was submitted to a journal or conference given by the reference (‘ Example of
pre-published content.‘[65]). The single opening quotation marks indicate that the
cited content is equal to the published or submitted content given as a reference at
the end, except for minor changes like citations, cross-references (numeric or verbal),
abbreviations or single words which are required to establish consistency with the
other content of this dissertation. Single closing quotation marks (’) are used to mark
modified pre-published content (’Example of modified pre-published content. ’[65]).
The text between single closing quotation marks consists generally of pre-published
content. There might exist changes such as: rearranged sentences, added or removed
words or (sub-)sentences. Both qualifiers, single opening quotation marks and single
closing quotation marks can mark pre-published content over several pages. Figure,
Tables, etc., which are already pre-published, are marked by an italic citation. The
manuscripts of pre-publications already published are available online. The language
and content of the submitted pre-publications are subject to a review process and
their content might alter from the finally published version. The following papers
contain pre-published content of this dissertation: [64,65,67–70,72].

1.4 Graph and Digraph Notation and Definition

’A graph G, consists of a set of vertices V (G) and a set of edges E(G) each of which
is a 2-tuple of vertices joined by the edge [19].

G =(V, E)
V (G) ={v0, . . . , vn−1}
E(G) ={(vi0 , vj0), . . . , (vim−1 , vjm−1)}

(1.1)

The term graph in the following explicitly refers to an undirected graph.

In a directed graph or digraph, D, the edges are directed and are referred to as arcs.
For each arc (vi, vj) in E(D), vi is adjacent to and directed to vj .

Definition 2. Path in a graph2: For two distinct vertices u and v in a graph G, a
u − v path P in G is a sequence of vertices in G, beginning at u and ending at v

1Referring to the term Vorveröffentlichung used in Promotionsordnung der Universität Stuttgart
vom 1. September 2011.

2This definition is a compound of the definitions of the walk and path from [19, p.31].

18

i
i

“dissertation” — 2017/11/5 — 13:24 — page 19 — #19 i
i

i
i

i
i

1.5 Set Merging Algorithms

such that consecutive vertices in P are adjacent in G. In path P a vertex of G only
occurs once [19].

A path in a graph G starting at vertex v1, passing v2 and v3 and ending at vertex
v4 is denoted as: v1 − v2 − v3 − v4.

Definition 3. Path in a digraph3: For two distinct vertices u and v in a digraph
D, a directed u→ v path P in D is a finite sequence (u = u0, u1, u2, . . . , uk = v) of
vertices, beginning at u and ending at v such that (ui, ui+1) is an arc for 0 ≤ i ≤ k−1.
In the directed path P a vertex of D only occurs once [19].

A directed path in a digraph d starting at vertex v1, passing v2 and v3 and ending
at vertex v4 is denoted as: v1 → v2 → v3 → v4.

Definition 4. Connected (vertices): Two vertices v1 and v2 in a graph G or digraph
D are connected if a path in G or D from v1 to v2 exists. This is denoted as v1 7→ v2.

Definition 5. Directed Rooted Tree: A rooted tree T is a sub-graph of an acyclic
digraph with a root vertex vr with a path to all other vertices in E(T). The arcs of a
tree can be either towards vr [88] (Equation 1.2a) or away from vr [85,90] (Equation
1.2b).

V (T) = {vi : vi ∈ V (D) ∧ vi 7→ vr} (a)
V (T) = {vi : vi ∈ V (D) ∧ vr 7→ vi} (b)

(1.2)

To represent a set merging data structures (introduced in 1.5) the first is more useful,
since a representative element of several sets has to be identified. If a vertex is not
the root, its parent is its successor on the path towards the root vertex. A root
vertex has no parent. Leaf vertices are all vertices which are not a parent of another
vertex in T . The children of a vertex are all vertices, the vertex is a parent of.

Definition 6. Directed Forest: A directed forest structure is a digraph which contains
only non-intersecting trees and each vertex belongs to exactly one tree. Since every
tree has only one root vertex, each tree is referred to by its root vr.

Definition 7. Connected component4: A sub-graph H of a graph G is called a
connected component if every two vertices of H are connected and H “ is not
contained in any other sub-graph of G having more vertices or edges than H.” [18]’[67]

19

i
i

“dissertation” — 2017/11/5 — 13:24 — page 20 — #20 i
i

i
i

i
i

1 Introduction

Algorithm 1: QuickFind [67]

1 makeSet(vertex e)
2 parent[e] := ∅
3 find(vertex e)
4 if parent[e] = ∅ then
5 return e
6 else
7 return parent[e]

8 union(vertex e, vertex f)
9 root0 := find(e)

10 root1 := find(f)
11 for v in V (F) do
12 if parent[v] = root0 then
13 parent[v] := root1

14 parent[e] := root1

1.5 Set Merging Algorithms

A set merging algorithm solves the problem of “efficiently merging sets according to
an initially unknown sequence of instructions, while at the same time being able to
determine the set containing a given element rapidly” [53].

’Problems which require the manipulation of disjoint sets by carrying out intermixed
find and union operations are union-find problems [119]. The makeSet(e) operation
creates a set Se consisting of a single element e, a union(e,f) operation replaces the
sets Se and Sf by Se ∪ Sf [53] and a find(e) operation returns the representative
element of the set containing e [53].

The most common union-find data structure to represent disjoint sets is a directed
forest. Each directed tree of this forest structure represents a set, and each vertex an
element of the set. The root vertex of each tree serves as the representative element
for the set. A union-find algorithm defines the exact instructions of makeSet, union
and find operations on the union-find data structure. In modern CCL and CCA
algorithms, union-find is the set merging algorithm which is applied most often.

The set merging algorithms QuickFind (Algorithms 1), QuickUnion (Algorithm 2)
and QuickUnion with path compression (Algorithm 3) are discussed in the following.

3This definition is a slightly modified compound of the definitions of the (directed) walk and
(directed) path from [19, p.50].

4This definition combines the definition of connected and component from [18, p.42].

20

i
i

“dissertation” — 2017/11/5 — 13:24 — page 21 — #21 i
i

i
i

i
i

1.5 Set Merging Algorithms

Algorithm 2: QuickUnion [67]

1 makeSet(vertex e)
2 parent[e] := ∅
3 find(vertex e)
4 if parent[e] = ∅ then
5 return e
6 else
7 return find(parent[e])
8 union(vertex e, vertex f)
9 root0 := find(e)

10 root1 := find(f)
11 if root0 ̸= root1 then
12 parent[root0] := root1

These algorithms operate on a directed forest, F , with nF vertices as a union-find
data structure. Adding a vertex to F , changing the parent of a vertex or looking
up the parent of a vertex in F is in the following referred to as one uf-instruction
(union-find instruction).

QuickFind (Algorithm 1) maintains F so that every leaf is directly connected to
the root vertex, i.e. the height of every rooted tree is at most one [109]. A find
operation of QuickFind, therefore, consists of one uf-instruction. A union operation
checks which vertices of F belong to the rooted trees to be combined and changes
their parents. A union operation in QuickFind can, therefore, require up to 2× nF

uf-instructions in the worst case: one to lookup the parent of each vertex and one to
change all the parents.

QuickUnion (Algorithm 2) joins their root vertices to perform a union operation on
two vertices. A find operation carries out repetitive lookups to traverse the path from
a vertex to its root vertex. Therefore, QuickUnion requires two find operations for
one union operation, which requires in the worst case up to nF uf-instructions [109].
Both QuickFind and QuickUnion have quadratic run time in the worst case [109].

QuickUnion with path compression (Algorithm 3) joins all vertices which are visited
during a find operation directly to the root vertex. Whenever these values are
accessed again they will point directly to the root (at the time that the path was
compressed). The worst case run time of QuickUnion with path compression grows
with the inverse of the Ackermann function [2,118] (which is quasi-linear for practical
cases) when the tree size of the union-find data structure is balanced with a heuristic
such as union-by-rank [118], which is not discussed, being beyond the scope of this
dissertation.

21

i
i

“dissertation” — 2017/11/5 — 13:24 — page 22 — #22 i
i

i
i

i
i

1 Introduction

Algorithm 3: QuickUnion with path compression [67]

1 makeSet(vertex e)
2 parent[e] := ∅
3 find(vertex e)
4 return findAndCompress(e)
5 findAndCompress(vertex e)
6 if parent[e] = ∅ then
7 return e
8 else
9 r := findAndCompress(parent[e])

10 parent[e] := r
11 return r
12 union(vertex e, vertex f)
13 root0 := find(e)
14 root1 := find(f)
15 parent[root0] := root1

For connected components analysis or labelling, the sequence of union and find
operations is still unknown (as in the definition of set merging algorithm in [53])
but restricted by properties of how two-dimensional images are processed, such as
the scan order and scan direction. This is exploited to derive an even more efficient
union-find algorithm for the special case of CCA and CCL of two-dimensional images.
This algorithm considers the context of the pixels of the input image processed by
CCA and CCL, such as the frequency a vertex associated with a pixel is used in find
operations. It is, therefore, called context-based union-find (CB-UF) and presented
in Section 2.2 (Algorithm 4). ’[67]

22

i
i

“dissertation” — 2017/11/5 — 13:24 — page 23 — #23 i
i

i
i

i
i

1.6 Review on Classical CCL and Special Case CCL Algorithms for Image Processing

1.6 Review on Classical CCL and Special Case CCL
Algorithms for Image Processing

The algorithm considered to be the first CCL algorithm was presented by Rosenfeld et
al. [102]. This algorithm combined for the first time the concepts of pixel connectivity,
forward raster scan, a decision tree and equivalence classes which lay the foundations
of basically all modern CCA and CCL algorithms. The exact algorithm as described
in [102] is hardly used for comparison against modern algorithms, due to the used
set merging algorithm. However, most modern publications benchmark against an
algorithm very close to the one described by Rosenfeld et al. which use one raster
scan to identify equivalence classes, and a second raster scan to assign a distinct
label to all pixels associated with a connected component.

The CCL algorithm by Haralick [44] introduces multi-pass connected components
labelling. This approach scans the image alternating in forward raster scan order
and backward raster scan order. New labels are associated with an object pixel if
no adjacent pixel is associated with a label. If a label is associated with an adjacent
pixel, it is also associated with the current pixel. When there are several different
labels associated with adjacent pixels the minimum label is associated with the
current pixel. In this way, the minimum label is propagated back and forth in the
raster scan until all the pixels of a connected component are associated with a unique
connected component. For complex pixel patterns in the input image, many scans
can be required, which is one of the main reasons why the multi-pass approach is
hardly used in modern CCL algorithms.

Samet et al. [105, 106] introduce an efficient CCL algorithm to extract feature
vectors from images which are represented as bin-trees or quad-trees. The presented
algorithm requires two passes to process an input image consisting of image elements
in a bin-tree or quad-tree representation. During the first pass, the algorithm
examines each pair of adjacent image elements, which represent one or several object
pixels of a binary image, to identify equivalence classes, and stores them in an
equivalence table [105]. In the second pass of this two pass algorithm, a label is
assigned to each image element. This was one of the first CCL algorithms to identify
the well-researched union-find problem [53,118] as an efficient basis of CCL.

Besides connected components labelling of two-dimensional images there are also a
number of CCL algorithms for processing three-dimensional images [54, 56, 91, 116].
In [91] the time is added as a fourth dimension in order to track changes in a series
of 3-D images. Even-though these algorithms follow the same basic principles as
2-D CCL algorithms, e.g. applying union-find [56], they are beyond the scope of
this dissertation as the focus is on processing 2-D images.

23

i
i

“dissertation” — 2017/11/5 — 13:24 — page 24 — #24 i
i

i
i

i
i

1 Introduction

1.7 Evaluation and Categorisation of State-of-the-Art
Sequential CCA and CCL Algorithms for Image
Processing

’Since the introduction of the classic connected components labelling algorithm by
Rosenfeld et al. [102], CCL has been continuously improved in many aspects. In the
following, mainly modern CCA and CCL algorithms are discussed. ’[67] Even-though
Rosenfeld’s algorithm [102] cannot be considered a modern CCA or CCL algorithm
it is used as a reference for comparison. A CCA or CCL algorithm is considered
sequential only if one pixel is processed at a time, i.e. neither temporal nor spatial
parallelism is applied. ’A summary of several properties of the discussed algorithms
is given in Table 1.1 which compares different properties, such as: scan mode and
scan order, the number of passes, the worst case run time, the evaluation method for
worst case run time and performs a categorisation of set merging algorithm used.

The algorithm in [102] is the very classical CCL algorithm. It is a two-pass algorithm
where the first pass uses a binary image as an input and creates a labelled image. If
more than one label is assigned to a connected component, these labels are stored
in an equivalence table T . These equivalence relations detected during the first
scan are resolved by iteratively sorting and replacing the entries of table T until T

contains one entry for each connected component. After this process, each entry of
T contains all labels assigned to its connected component in the first pass sorted in
ascending order, starting with the smallest label which serves as a representative
element. During the second pass, all the object pixels of the labelled image are
replaced by their representative values stored in T . This assigns the same label to
each pixel of a connected component.

Dillencourt et al. [28] proposed a general two-pass CCL algorithm for different image
representation such as 2-D arrays and quad-trees. This algorithm uses QuickUnion
with path compression extended by a heuristic called age-balancing embedded into
the union operation. Age-balancing ensures that the label associated with the first
pixel of a connected component encountered during a scan is always the root vertex.
Using this property, it is formally proven that the algorithm used in [28] scales
linearly with the number of pixels.

In [115], a multi-pass CCL algorithm is proposed using an equivalence table (called
connection table) M to store the relations between provisional labels. This algorithm
is, therefore, referred to as a scan plus connection table (SCT) CCL algorithm.
Previous multi-pass algorithms propagated labels by neighbourhood operations [45].
The algorithm in [115] creates a forest structure stored in the equivalence table M

during the first scan with one tree structure for each connected component consisting
of provisional labels as vertices. Every scan over the image decreases the height
of the tree structure in M by one. ’[67] This effectively distributes the steps of a
find operation over the multiple scans, since only the parents of neighbourhood

24

i
i

“dissertation” — 2017/11/5 — 13:24 — page 25 — #25 i
i

i
i

i
i

1.7 Evaluation and Categorisation of State-of-the-Art Sequential CCA and CCL
Algorithms for Image Processing

Algorithm # Passes Scan Scan Connectivity
mode order

Classical [102] 2 pixel raster scan 8
SCT [115] multi pixel raster scan 8

SAUF [127] 2 pixel raster scan 8
GCCL [28] 2 pixel raster scan 4
RTS [49] 2 run raster scan 8
HCS [48] 1.5 run raster scan 8
LSL [76] 3 run raster scan 8
SEL [27] 2 pixel raster scan 4
CT [17] 1.5 pixel contour tracing 8

Bailey2007 [7] 1 pixel raster scan 8

Algorithm RT complexity RT evaluation Set merging
method algorithm

Classical [102] N/A N/A Rosenfeld [102]
SCT [115] Linear Experimental None

SAUF [127] Linear Formal proof QuickUnion + pc
GCCL [28] Linear Formal proof QuickUnion + pc
RTS [49] N/A N/A QuickFind + opt
HCS [48] Linear Experimental QuickFind + opt
LSL [76] N/A N/A QuickUnion
SEL [27] N/A N/A QuickFind
CT [17] Linear Formal Proof None

Bailey2007 [7] Linear Proof [7]

Table 1.1: This table shows a comparison of properties such as run time (RT)
complexity and the method of evaluating the run time (RT eval meth).
Additionally, the set merging algorithms according to the definitions from
Section 1.5 are identified. Some of them are an optimised variant (opt) of
the algorithm from 1.5, while some use path compression (pc). [67]

25

i
i

“dissertation” — 2017/11/5 — 13:24 — page 26 — #26 i
i

i
i

i
i

1 Introduction

pixels are looked up in M . ’The algorithm associates each pixel with its connected
component, however, it cannot be categorised as a union-find algorithm such as
those in Section 1.5. The run time is stated to be linear which is determined by
experimental evaluation. Most of the images used for evaluation require four or
fewer passes for final labelling [115].

In the two-pass CCL algorithm in [125–127] the union-find data structure is repre-
sented by an array, therefore, it is referred to as a scan plus array-based union-find
(SAUF). QuickUnion with path compression is used to maintain this array-based
union-find data structure. To accelerate the label selection process for each pixel, a
decision tree is proposed reducing the number of labels of the neighbourhood to be
accessed. A formal proof for the linear run time of the algorithm is given.

The CCL algorithm in [49] is a two-pass algorithm which carries out run-length
encoding of the binary image during the first pass and processes these runs in the
second pass. The algorithm uses a union-find data structure stored in an array which
is updated by an optimised variant of QuickFind. To avoid updating all entries of M

for a union operation, an additional linked list is maintained for each tree structure
in M containing all the vertices of the tree structure. A union operation on two
vertices links the two lists and updates the equivalence table entries of these vertices
to the root vertex. In [50], an optimisation of [49] is proposed which processes only
runs of object pixels in the second pass. In [48], the Euler number is also computed
and the rest of the algorithm is equivalent to [50]. Since, this review focuses on
the feature extraction, only the part of [48] involved in CCL is considered. In the
following, [48] is referred to as HCS.

In [27], simple and efficient connected components labelling (SEL) is presented. It
requires two passes to label all pixels using an equivalence table as union-find data
structure carrying out the QuickFind algorithm. The algorithm is improved for the
worst case image. The image pattern becoming the new worst case with the proposed
improvement still, however, requires a quadratic number of uf-instructions.

For Light Speed Labeling (LSL) [76] memory accesses and conditional statements
were identified to be the key issue slowing down CCL on state-of-the-art processors
with a RISC (reduced operation set computer) architecture. The algorithm is
consequently following this optimisation principle by distributing the labelling process
to three passes replacing conditional operations. Both QuickUnion and Selkow’s
algorithm [111] are applied as a set merging algorithm. Selkow’s algorithm [111] is a
variation of the idea behind QuickFind. In [14], LSL was identified to require the
fewest amount of processing cycles per pixel when carried out on a general-purpose
processor (GPP).

The algorithm in [17] follows a completely different approach. Instead of scanning
the image in raster scan order, connected components are identified by contour
tracing which requires random access to the image data. It is, therefore, referred
to as CT in the following. All control information is stored in the labelled image,

26

i
i

“dissertation” — 2017/11/5 — 13:24 — page 27 — #27 i
i

i
i

i
i

1.8 Evaluation and Categorisation of State-of-the-Art Parallel CCA and CCL Algorithms

therefore no set merging algorithm is required. This algorithm is considered to be
a single-pass algorithm. However, random access to the input image, as well as
the generation of control information is required. Actually more than one pass is
required; in Table 1.1 it is, therefore, denoted as a 1.5 pass algorithm. The required
random access makes this algorithm less practical for recent GPPs and dedicated
hardware architectures.

Some of the CCL algorithms compared in this section have formally proven linear
run time [17,28,127]. All of the two-pass CCL algorithms use a set merge algorithm
which requires either a minimum of two instructions for a find operation, or have a
union operation which scales quadratically with the number of labels. The major
contribution of the SLCCA algorithm presented in Chapter 2 is to introduce the one
lookup per pixel paradigm, which can be reached by a novel context-based union-find
algorithm. ’[67]

The algorithm by Bailey et al. [7] is a single-pass CCA algorithm which aims
to accelerate CCA on FPGA devices. It builds the groundwork for the SLCCA
algorithm presented in Chapter 2 and the PCCA algorithm presented 4 and can,
therefore, be considered the algorithm with the most influence to this dissertation. It
was the first algorithm to introduce a stack to accelerate union-find operations, which
builds the basis for the context-based union-find algorithm presented in Section 2.2.
The FPGA hardware architecture of this CCA algorithm is presented in [8, 58]. An
optimisation to reduce the amount of memory required compared to [7] is presented
in [83]. The technique introduced in [83] is referred to as aggressive relabelling in the
following. A linear run time in the number of pixels of the algorithm is demonstrated
by analysis of the worst case pattern.

1.8 Evaluation and Categorisation of State-of-the-Art
Parallel CCA and CCL Algorithms

Even in early CCA algorithms, the prospect of accelerating the execution by parallel
processing was identified and explored [86]. Since parallel processing devices such as
multi-core processor systems and FPGAs are emerging, parallelism is an important
issue to accelerate image processing systems applying CCA. Here a CCA or CCL
algorithm is considered a parallel CCA or CCL algorithm if it processes several
pixels simultaneously and makes use of spatial parallelism or temporal parallelism.

Table 1.2 compares several parallel state-of-the-art CCA and CCL algorithms with
respect to the same criteria as in Section 1.7: scan mode, scan order, connectivity
and the used set merging algorithms. The scalability with the number of processing
instances or threads is a major issue for parallel CCA and CCL algorithms, therefore,
the algorithms discussed in the following are compared with respect to:

• Types of parallelism used,

27

i
i

“dissertation” — 2017/11/5 — 13:24 — page 28 — #28 i
i

i
i

i
i

1 Introduction

• Maximum number of parallel processing threads/instances TR,

• Speed-up Smax: from TR compared to a single thread/instance.

In Tables 1.2 and 1.3, CCA and CCL algorithms designed and optimised for different
processing devices from general-purpose processors (GPP) to graphics processing
units (GPUs) are shown.

Since the presented algorithms have different design goals, and the reported bench-
mark results are from the execution on different processing devices, a direct quantita-
tive comparison is not useful. However, since almost all of the presented algorithms
are based on the same basic algorithmic principles (set merging algorithm, run-
length encoding, etc.), an overview of the scalability of these principles on different
processing devices is given.

The algorithm in [42] at first divides the input image into several slices (called
chunks). These slices are processed in parallel using the decision tree proposed
in [127] and the linked list approach from [50]. As set merging algorithms QuickFind
and a parallel version of RemSP [100] are used; QuickFind for processing the
image slices and RemSP to merge the labels of slice components in parallel. The
algorithm is executed and benchmarked on a Cray XE6 multi-processor system,
storing image data and control information in off-chip memory and processor caches.
The scalability is analysed for 2, . . . , 24 image slices, each processed by one thread.
For processing natural images from the SIPI database [124], a speed-up of Smax ≈ 5
is reached when executing TR = 24 threads.

The SPCCA algorithm [98] is a single pass CCA algorithm extracting feature vectors
from a binary input image. It makes use of temporal parallelism by dividing the
images into vertical slices which are processed in parallel. The merging of the border
labels is sequential. The reported results are from executing SPCCA on 1, . . . , 4 cores
of a multi-core XMOS processor. The presented speed-up grows sub-linearly with

Algorithm #Passes Scan Scan Connec- Set merging
mode order tivity algorithm

PaRemSP [42] 2 pixel raster scan 8 QuickFind/
RemSP [100]

SPCCA [98] 1 pixel raster scan 8 N/A

Chen2014 [20] 2 pixel raster scan 8 QuickFind
+ opt [50]

Stava2011 [113] 2 pixel raster scan 8 QuickUnion
ParLSL [12] 2/3 run raster scan 8 QuickFind

Table 1.2: Comparison of the scan mode, scan order, connectivity and set merging
algorithms of parallel CCA and CCL algorithms used.

28

i
i

“dissertation” — 2017/11/5 — 13:24 — page 29 — #29 i
i

i
i

i
i

1.8 Evaluation and Categorisation of State-of-the-Art Parallel CCA and CCL Algorithms

the number of threads. For executing SPCCA on four processor cores, a speedup of
Smax = 2 is reached.

The CCL algorithm proposed by Chen et al. [20] processes several pixels simul-
taneously by extending the merging method introduced in [50] . The algorithm
makes use of spatial parallelism by dividing the image into vertical image slices,
each executed on a separate processing instance. This first step uses QuickFind in
addition with the linked list optimisation from [50] as a set merging algorithm. In a
second processing step, temporal parallelism is exploited by associating the labels
assigned to neighbouring slice components with their connected components. This
step uses a parallel version of the merge function from [50], merging the labels of
neighbouring slices step by step in a tree-like manner. The CCL algorithm proposed
in [20] is executed and benchmarked on the many-core architecture TILE64 using
external off-chip memory to store image data and control information. The scalabil-
ity is analysed by evaluation of the speed-up of 2, . . . , 48 image slices (executed on
2, . . . , 48 processor cores) compared to a single one. For an increasing number of
processor cores, the speed-up seems saturated. For 48 cores the speed-up is 11.38.
The synchronisation between the processing cores and the data dependencies in the
second pass are identified as bottleneck for achieving better performance.

In [113], a CCL algorithm optimised for GPUs (graphics processing unit) is presented.
The input image stored in the global memory of the GPU is divided horizontally and
vertically into image tiles which are processed in parallel. In this first processing step,
each pixel of the input image is passed twice. This is followed by a recursive merging
step carried out on several tiles in parallel. As set merging algorithm QuickUnion is
used. The scalability of the presented algorithm with the number of threads is not
presented in [113].

Algorithm Parallelism TR Smax Processing Memory
device type

PaRemSP [42] Spat+Temp 24 5 Cray XE6 OFF+ON
SPCCA [98] Spat 4 2 XMOS OFF+ON

Chen2014 [20] Spat+Temp 48 11 TILE64 OFF+ON

Stava2011 [113] Spat N/A N/A NVIDIA
GTX480

OFF+ON

ParLSL [12] Spat+Temp 24 18.8-22.2 Intel Xeon
E5-2695v2

OFF+ON

Table 1.3: Comparison of parallel CCA and CCL algorithms: Maximum number
of threads TR. Speed-up Smax for TR threads/instances compared to a
single one. Parallelism type: spatial (Spat) or temporal (Temp). Memory
type: on-chip memory (ON) or off-chip memory (OFF).

29

i
i

“dissertation” — 2017/11/5 — 13:24 — page 30 — #30 i
i

i
i

i
i

1 Introduction

Parallel Light Speed Labeling (ParLSL) [12] is the parallelisation of LSL [76]. The
image at first is divided into p horizontal image slices which are labelled in parallel.
Afterwards, the border labels are merged. Due to the proposed pyramid merging
method, the border labels of several image slices can be merged simultaneously.
The benchmarks from [12], carried out on a Intel Ivy-Bridge Xeon E5-2695v2
multi-processor system with 24 processing cores, show that ParLSL scales almost
linearly with the number of image slices, where each slice is processed by one of the
processor cores. A speed-up between 18.8 and 22.2 compared to processing on a
single core is achieved when executing ParLSL on all 24 processor cores in parallel.
Due to the run-length encoding and other optimisations introduced in LSL, ParLSL
is very memory-efficient. These optimisations reduce the amount of memory required
for control information to fit in on-chip caches of state-of-the-art processors which
reduces the access to slower off-chip memory. In [13] ParLSL was further improved
for multi-processor systems and benchmarked with a 60-core quad socket Intel Xeon
system.

30

i
i

“dissertation” — 2017/11/5 — 13:24 — page 31 — #31 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected
Components Analysis Algorithm

In this chapter the single-lookup connected components analysis algorithm, SLCCA,
is introduced. The majority of content in single quotation marks is based on [67].

’Some CCA and CCL algorithms are optimised to the instruction sets or memory
architectures of the hardware device they are used on [76]. The SLCCA algorithm is
motivated by the idea of creating a CCA algorithm for a customised high-performance
architecture. SLCCA, therefore, only contains operations and data structures which
can be mapped to basic processing and basic storage elements such as adder, lookup
table (LUTs), flip-flops or on-chip random-access memory (RAM). To realise such a
high-performance architecture, the properties explained in the following are deemed
most important:

• Single-pass processing

• Linear processing time

• Single lookup per pixel to determine the representative label

Two-pass or multiple pass algorithms maintain a data structure for a labelled
image [50, 115] and optimise the access to this labelled image to accelerate the
processing of the input data. For a single-pass CCA algorithm, a labelled image is
not required, hence does not need to be optimised in a way.

Acquiring the input data is linear since the binary input image is either read from a
memory or received as a pixel stream. The SLCCA algorithm processes the input
data in linear time as pixels are read or received. This will be shown in Section
2.5.

A pixel can only be processed if a label has been assigned to the preceding pixel
in the scan through the image. This sequential data dependency requires several
lookup instructions in many CCL and CCA algorithms [28,49,50,115,127] due to
the union-find data structures the equivalence relations are represented by. The
SLCCA algorithm introduces a data structure and union-find algorithm which
reduces the number of lookups to determine the representative label of a pixel
to a single lookup per pixel. The proposed novel optimisations of the union-find
algorithm embodied in SLCCA are context-based. These optimisations consider the
restricted order in which union and find operations are induced when processing
pixel patterns of 2-dimensional images in raster scan to reduce the number of

31

i
i

“dissertation” — 2017/11/5 — 13:24 — page 32 — #32 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Abbreviation Name
DT Data table
AT Active tags
F Label graph for L

FV Feature vector
GP Pixel graph
H Image height
I Source image
L Labelled image

LS Label stack
M Merger table
R Reuse FIFO
S Stack

VF Valid flags
W Image width

Table 2.1: Nomenclature used in this chapter. [67]

operations necessary. The union-find algorithms used in previous CCL and CCA
algorithms [28, 49, 50, 115, 127] require several lookups per pixel to identify which
connected component a pixel is associated with. The single lookup property was
identified as being especially useful for dedicated hardware architectures and is
further discussed in Chapter 3 which introduces an architecture using the SLCCA
algorithm. The SLCCA algorithm enables this hardware architecture realised on an
FPGA to process a higher throughput than any other CCA architecture (processing
one pixel per clock cycle) in the academic literature [65]. In Section 2.3, the proposed
algorithm, SLCCA, is presented. In Section 2.5, SLCCA is compared to other CCA
and CCL algorithms. ’[67]

2.1 General Definitions

’The abbreviations and names of data structures used in the following are summarised
in Table 2.1. The input image I is a binary image of width W and height H. An
image position is a two-dimensional coordinate (a, b), where a and b are non-negative
integers, hence a ∈ N0, b ∈ N0, 0 ≤ a < W and 0 ≤ b < H. The set imagePos

consists of all image positions in I.

imagePos = {(a, b) : 0 ≤ a < W, 0 ≤ b < H, a ∈ N0, b ∈ N0}. (2.1)

At each image position of I there is either an object pixel or a background pixel. In
the following, an object pixel is represented by the Boolean value True in equations

32

i
i

“dissertation” — 2017/11/5 — 13:24 — page 33 — #33 i
i

i
i

i
i

2.1 General Definitions

rightPos

visited

not visited
positions

leftPos

LX

X

Figure 2.1: Visualisation of the positions in the sets visited, rightPos, leftPos in
the image. [67]

and by a black pixel in images. A background pixel is represented by the Boolean
value False in equations by a white pixel in images. The pixels of I are visited in
forward raster scan order. The image is scanned in each row from left to right,
starting the scan at the top left position of the image, (0, 0). After the end of each
image row, at the horizontal position W − 1, the next row is processed starting
at horizontal position 0. This process is continued until the position at the right
bottom of the image, (W − 1, H − 1), is reached. This is defined by the W ×H-
tuple rasterScan containing W ×H image positions.

rasterScan = ((0, 0), ..., (W − 1, 0), (0, 1), ...(W − 1, H − 1)). (2.2)

A position p1 preceding another position p2 in rasterScan is denoted as p1 ≺ p2. If
position p2 succeeds p1, this is denoted by p2 ≻ p1.
The sets of positions leftPos, rightPos and visited are defined for raster scan order
as depicted in Figure 2.1. The set leftPos(a, b) contains the positions of the pixels
of the current row to the left of position (a, b).

leftPos(a, b) = {(i, b) : 0 ≤ i < a, i ∈ N0}. (2.3)

The set rightPos(a, b) contains the positions of the pixels of the previous row to
the right of position (a,b).

rightPos(a, b) = {(i, b− 1) : a < i < W, i ∈ N0}. (2.4)

The set visited(a, b) contains all positions of all pixels which have already been
visited including position (a, b).

visited(a, b) = {(i, j) : (i, j) ≺ (a, b), i ∈ N0, j ∈ N0} ∪ (a, b). (2.5)

33

i
i

“dissertation” — 2017/11/5 — 13:24 — page 34 — #34 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

For the current position (x, y), leftPos(x, y), rightPos(x, y) and visited(x, y) pro-
vide the corresponding sets of image positions.

Definition 8. Pixel graph: Let GP be the pixel graph with one vertex va,b for each
object pixel in I at position (a, b).

V (GP) = {va,b : I[(a, b)] = 1 ∧ (a, b) ∈ imagPos}. (2.6)

Two vertices of GP , va1,b1 and va2,b2, are adjacent if

∥(a1, b1)− (a2, b2)∥ = 1. (2.7)

Here, 8-connectivity is assumed (i.e. using uniform norm ∥ ∥L∞), although
the same can be applied for 4-connectivity (using Taxicab geometry ∥ ∥L1).
Adjacent pixels in GP are also connected. The set of edges E(GP) contains a
2-tuple for each pair of adjacent vertices (va1,b1, va2,b2).

E(GP) ={(va1,b1, va2,b2) : va1,b1, va2,b2 ∈ V (GP)
∧ ∥(a1, b1)− (a2, b2)∥ = 1}.

(2.8)

The object pixels in I and their vertices in GP have a one-to-one relation.
Therefore, the properties defined for the pixel graph GP do hold true for
pixels in I, too.
GP (x, y) denotes the state of GP immediately after processing the pixel at
(x, y) in raster scan order.

V (GP (x, y)) ={va,b : va,b ∈ V (GP) ∧ (a, b) ∈ visited(x, y)}.
E(GP (x, y)) ={(vi, vj) : vi,vj ∈V (GP (x, y)) ∧ (vi, vj) ∈ E(GP)}).

(2.9)

Definition 9. Connectedness: Two vertices vp1 and vp2 in GP are connected if a path
exists consisting of vertices from V (GP) and arcs from E(GP). This is denoted as
vp1 7→ vp2.
Two pixels in I at position p1 and p2, I[p1] and I[p2], belong to the same connected
component if their vertices vp1 and vp2 are connected.

Definition 10. Component segment: A subset of connected object pixels of a con-
nected component of I is called a component segment.

Connected components labelling assigns a label L[(x, y)] to each pixel at position
(x, y), with the goal of eventually assigning the same label to all pixels belonging to
a single connected component. Label 0 is reserved for background pixels. The label
graph F is a directed forest structure where each vertex, vL ∈ V (F), corresponds
with exactly one label assigned to L.

The labelling process assigns labels by associating every vertex of V (GP) with exactly
one vertex of V (F). Let va,b ∈ V (GP) and vLi

∈ V (F) be the vertex corresponding
to Li, then associating va,b with vLi

is equivalent to assigning L[(a, b)] := Li.

34

i
i

“dissertation” — 2017/11/5 — 13:24 — page 35 — #35 i
i

i
i

i
i

2.1 General Definitions

1 2

3 3

3 3 3 3

3 3

3

4

4

4 4

1

A B C

D X

3

(a) Binary image I and
labelled image L

00

11

20

61

72

51

42 62

53

52

6313

14

33

54 64

15 25 5535 45

(b) Pixel graph GP

2

1

4

3

(c) Label graph F

Figure 2.2: A label is assigned to each pixel in raster scan order. In 2.2(a) the
neighbourhood of a pixel at position X = (x, y) is shown. In 2.2(b) the
pixel graph GP of the image in 2.2(a) is shown, and 2.2(c) shows the
corresponding label graph F . [67]

An example pixel graph GP and label graph F both derived from the image in
Figure 2.2(a) are shown in Figure 2.2(b) and Figure 2.2(c).

Whenever a vertex vi ∈ GP is processed in raster scan order, it is assigned a label LX .
Where possible LX is assigned the label of an adjacent processed vertex. Otherwise,
a makeSet operation creates a new vertex in F , which is associated with associated
with LX . If pixels of a connected component are processed which are not connected
through the already scanned pixels (GP (x, y)), they are first detected as different
component segments and are associated with different trees in F . As soon as a pixel
is reached which connects two previously disjoint sub-graphs of GP , F is updated
by a union operation. The state of F after processing the pixel at position (x, y) is
denoted F (x, y).

Definition 11. Level (of a vertex in a directed rooted tree): The level of a vertex
labelled l, level(l), is 0 for the root vertex and for all other vertices becomes one
higher than the level of its parent [73].

level(vL) =
{

0, vL is root,

level(parent(vL)) + 1, otherwise.
(2.10)

35

i
i

“dissertation” — 2017/11/5 — 13:24 — page 36 — #36 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

l0
l2

l1

LX

l0

l2
LX

l1

Figure 2.3: Two examples of images containing stale label l2. A non-root label is
assigned to Lx, because a stale label is in the neighbourhood. [67]

l0l0l0

Arc segment

Pier segment

Arc segment

Pier segment Pier segment

Figure 2.4: Example of a bridge pattern labelled l0 with tree piers segments (black)
and two arc segments (shown in grey). [67]

Definition 12. Height (of a directed rooted tree): The height of a directed rooted
tree T , height(T), is the maximum level of a vertex in V (T).

height(T) = max{level(vi) : vi ∈ V (T)}. (2.11)

The arcs of the label graph F , used as union-find data structure, are stored in a 1-D
array, the merger table M . A label l0 associated with a vertex v0 is joined with a
label l1 associated with a vertex v1, by updating M [l1] = l0 which is the equivalent
of adding an arc (v1, v0) to E(F). The label l0 is called the parent label of l1 and l1
is called the child label of l0. For convenience, every label lr of a root vertex vr is
joined with itself, M [lr] = lr. A label which is its own parent label is called a root
label.

Definition 13. Stale label: A label ls = L[(x, y)] is called a stale label if a single
lookup in M does not yield the root label.

A label becomes stale if the height of its vertex is larger than one due to several
merger operations. In the examples in Figure 2.3, labels l1 and l2 merge, which
makes height(l2) = 1. The merger operation on l0 and l1 in the following row result
in height(l2) = 2. This makes l2 stale, i.e. the single lookup at position (x, y)
results in assigning Lx = l1 to the current pixel, which is a non-root label.

Definition 14. Bridge pattern: A bridge pattern is a component segment in which
an object label appears two times in the same image row separated by background
pixels. An example of a bridge is given in Figure 2.4.’[67]

36

i
i

“dissertation” — 2017/11/5 — 13:24 — page 37 — #37 i
i

i
i

i
i

2.2 Relation of Union-Find to SLCCA: The Set Merging Algorithm used by SLCCA

2.2 Relation of Union-Find to SLCCA: The Set Merging
Algorithm used by SLCCA

’For connected components analysis, the order of performing union and find opera-
tions is governed by the connectivity of pixels of a two-dimensional image and the
order in which the pixels are scanned. Algorithm 4 exploits this to achieve linear run
time and requires fewer union-find instructions in the worst case than QuickFind
(Algorithm 1), QuickUnion (Algorithm 2) and QuickUnion with path compression
(Algorithm 3). Since Algorithm 4 is optimised to the order union-find operations are
issued in CCA, it is dependent on the context of the current pixel when scanning an
image. Therefore, it is referred to as context-based union-find (CB-UF).

The SLCCA algorithm is an advancement of the algorithm proposed by Bailey et
al. [7]. It combines the best features of QuickFind and QuickUnion. Like QuickFind,
the find operation requires only one union-find instruction. The union operation of
two vertices e and f joins the root vertex of e with the root vertex of f , similar to
QuickUnion. In addition to makeSet, union and find operations, a fourth operation,
flatten, is introduced which performs the equivalent of path compression by joining
all vertices of the union-find data structure in M with their root vertex. To accelerate
flatten, the arcs joining vertices with levels larger than one are memorised by storing
them in a stack for every union operation. The find operation returns the parent
of a vertex, i.e. only returns the root vertex for vertices of level zero or one. The
instance (here the CCA algorithm) using context-based union-find (Algorithm 4)
has to ensure that the flatten operation is always called before a find operation is
applied on a vertex with level larger than one.

Normally, a find operation is used to determine the root of a vertex [118] by a series
of iterative lookups. In context-based union-find (Algorithm 4), the find operation is
replaced by a single lookup in the merger table M , which is equivalent to a find for
trees of height ≤ 1 QuickUnion (Algorithm 2).

2.3 Algorithmic Description of SLCCA

2.3.1 Neighbourhood Patterns and Operations

The labelled image L is a two-dimensional array of labels with the same dimensions
as the input image I. A label associated with a pixel of I at position (a, b) is assigned
to the same position of L. The neighbourhood η of the current pixel at position
(x, y) is the set of positions of adjacent pixels that have already been processed, i.e.
η = {(x− 1, y− 1), (x, y− 1), (x + 1, y− 1), (x− 1, y)} = {A, B, C, D}. The labels in
L at the neighbourhood positions η are denoted LA, LB , LC and LD. To move from

37

i
i

“dissertation” — 2017/11/5 — 13:24 — page 38 — #38 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Algorithm 4: Context-based union-find algorithm. [67]

1 makeSet(vertex e)
2 M[e] := e
3 find(vertex e)
4 return M[e]
5 union(vertex e, vertex f)
6 root0 := find(e)
7 root1 := find(f)
8 if root0 ≺ root1 then
9 M[root1] := root0

10 else
11 Stack.push(root1,root0)
12 M[root0] := root1

13 flatten()
14 while not Stack.empty do
15 Lmin,Lmax := Stack.pop()
16 M[Lmax] := find(Lmin)

one window position to the next, their values are designated right before selecting
the label for the current position, as follows:

LA := LB
−,

LB := LC
−,

LC := M [L[C]],
LD := LX

−.

(2.12)

The labels LB
−, LC

− and LX
− , shown in Figure 2.5, are neighbourhood labels of

the previous label at position (x− 1, y). Labels of positions outside of the image are
considered as background, i.e. L[i] = 0 ∀i /∈ imagePos.
The set Lη denotes all labels of object pixels in the neighbourhood of the current

pixel.

Lη := {L[i] : i ∈ η, I[i] = 1}. (2.13)

Let

Lmin :=
{

0, Lη = ∅,
min{Lη}, otherwise,

Lmax :=
{

0, Lη = ∅,
max{Lη}, otherwise.

(2.14)

38

i
i

“dissertation” — 2017/11/5 — 13:24 — page 39 — #39 i
i

i
i

i
i

2.3 Algorithmic Description of SLCCA

LX

LB

LC
-
LCLA

LB
-

LD

LX
-LD

-

LA
-

Figure 2.5: This image shows the neighbourhood labels of current pixel LX ,
LA, . . . , LD, and the neighbourhood labels of the previous pixel,
L−

A, . . . , L−
D.

The label LX to be assigned to the pixel at position (x, y) of L is

LX :=

0, I[(x, y)] = 0,

newLabel, Lmin = 0,

Lmin, otherwise,

L[(x, y)] := LX .

(2.15)

Definition 15. Label patterns and label operations: For object pixels, there are
three different scenarios with either zero, one or two different object labels in the
neighbourhood, Lη which are referred to as new label pattern, label copy pattern and
merger pattern. An operation induced by such a pattern is referred to as new label
operation, label copy operation or merger operation, respectively.

A new label operation is performed if an object pixel has no object pixels in its
neighbourhood, i.e. it is assigned the next available new label. This invokes a
makeSet operation on the graph of the union-find data structure F creating a new
rooted tree. In general, the new label (called newLabel in Equation 2.15 and 2.16)
is provided by a counter, which is incremented for each new label. To more easily
detect labels of level > 1, a flag VF is associated with each label. For each new label
operation, the merger table M as well as VF is updated:

M [newLabel] :=newLabel,

VF [newLabel] :=True.
(2.16)

A label copy operation assigns Lmin to the current position of the labelled image
L[(x, y)].

Since adjacent object pixels at the positions η will already have the same label as a
result of prior processing, a merger pattern can only occur between non-adjacent
pixels, i.e. between LA and LC or LD and LC [127], as shown in Figure 2.6.

39

i
i

“dissertation” — 2017/11/5 — 13:24 — page 40 — #40 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

XX X
l1 l2 l2

l1

l1
l1

l2

Figure 2.6: Merger patterns possible in the labels of pixel neighbourhood Lη. [67]

To simplify discussion, LAorD is introduced to refer to the label of LA or LD, i.e. all
merger patterns consist of the two labels LAorD and LC .

LAorD :=
{

LD, I[A] = 0,

LA, otherwise.
(2.17)

A merger pattern is detected when LAorD and LC have different labels and neither
is background.

MergerPat := (LAorD ̸= LC) ∧ (LAorD, LC ̸= 0). (2.18)

A merger operation makes the label which first appears in the raster scan, Lmin, the
parent label of Lmax. This corresponds to a union operation. The vertex associated
with Lmax is no longer a root so VF [Lmax] is set to false.

M [Lmax] :=Lmin,

VF [Lmax] :=False.
(2.19)

Definition 16. Propagating and non-propagating patterns: Concerning forward raster
scan order, a merger pattern is propagating if the first occurrence of LAorD in L in
forward raster scan order precedes the first occurrence of LC in forward raster scan.
Otherwise the merger pattern is non-propagating.

Definition 17. Chain pattern: A series of more than one non-propagating merger
patterns in the same image row of a connected component is called a chain pattern.

In Figure 2.7(a), an example of propagating merger patterns is shown. The label
assigned to position 1 is propagated to position 2 and 3 . In Figure 2.7(b), an
example of non-propagating merger patterns is shown. The labels at position 4 , 5

and 6 are not propagated. The vertices of the labels 5, 6, 7, 8 are connected as a
chain in the label graph F , as shown in Figure 2.7(c).

The minimum label Lmin of a propagating merger pattern has to be propagated
into the next neighbourhood. This is achieved by updating LB with the previous
position’s LAorD, LAorD

−, if a propagating merger pattern was detected at the
previous position (MergerPat− ∧ LAorD

−=Lmin
−). Therefore, Equation 2.12 is

extended to

LB :=
{

Lmin
−, MergerPat− ∧ LAorD

− = Lmin
−,

LC
−, otherwise.

(2.20)

40

i
i

“dissertation” — 2017/11/5 — 13:24 — page 41 — #41 i
i

i
i

i
i

2.3 Algorithmic Description of SLCCA

1

1
1
1
1
1
1

1 1

3→1

2
2
2
2
2→1

3
3
3

4
4
4→1

5
5
5
5
5
5

6
6
6
6
6

7
7
7
7

8
8
8

7 6 51
2 3 4 5 6

(a) (b)

6

5

8

7

2

1

43

(c)

Figure 2.7: (a) Example of propagating merger patterns. (b) Example of a chain
pattern consisting of non-propagating merger patterns. (c) Label graph
of image in (a) at the top and Label graph of image in (b) below.

’[67]

2.3.2 Flattening Trees in the Union-Find Structure

’A prerequisite for the CB-UF (Algorithm 4) is that all trees of the forest structure
in M are flattened to height ≤ 1. This can be achieved by using path compression,
the equivalent of which is embodied in the flatten operation. In QuickUnion with
path compression (Algorithm 3) the path compression is performed in association
with the find operation [117] as findAndCompress. The flatten operation of CB-UF
(Algorithm 4) starts at the root vertex and processes towards the leaves, unlike
standard path compression approaches [110], which process from the leaves towards
the root. Since minimum labels propagate to the right because of the raster scan
by assigning the minimum to LX which becomes LD (Equation 2.12 and 2.20), the
height of a tree in F is increased by one for each non-propagating merger pattern.
Therefore, the arc from Lmax to Lmin created by a union operation induced by a
non-propagating merger pattern is pushed onto the stack S to accelerate flattening.

S[s] :=(Lmax, Lmin)
s :=s + 1

when MergerPat∧Lmin = LC . (2.21)

41

i
i

“dissertation” — 2017/11/5 — 13:24 — page 42 — #42 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

At the end of each image row the flatten operation is invoked. This pops the arcs off
stack S, visiting them in reverse order, effectively performing a reverse scan along
the row.

s :=s− 1,

(Lmaxs , Lmins) :=S[s].
(2.22)

The vertex associated with label Lmaxs in S is made the child of the minimum label
Lmins which propagates the root back to the leaves, effectively flattening the forest
structure in M to a height of one.

M [Lmaxs
] := M [Lmins

]. (2.23)

’[67]

42

i
i

“dissertation” — 2017/11/5 — 13:24 — page 43 — #43 i
i

i
i

i
i

2.3 Algorithmic Description of SLCCA

Feature Feature vector Initial feature Combining operator
vector IFV FVa ◦ FVb

Area A 1 Aa + Ab

Bounding box

xmin

ymin

xmax

ymax

x

y

x

y

min(xmin,a, xmin,b)
min(ymin,a, ymin,b)

max(xmax,a, xmax,b)
max(ymax,a, ymax,b)

First
order
moment

(
M10

M01

) (
x

y

) (
M10a + M10b

M01a + M01b

)

Table 2.2: Description of data structure and combining operator for the Feature
Vectors Bounding Box and Area and First Order Moment. [67]

2.3.3 Feature Vector Collection

’Definition 18. Feature vector: The feature vector of an image component is an n-tuple
composed of functions of the component’s pattern [45]. Connected components
analysis is concerned with deriving the feature vector for each component. An
operator ◦ is defined for combining the feature vectors when a merger operation is
induced. The initial feature vector (IFV) is the feature vector of a single pixel.

Table 2.2 presents the combining operation, the initial feature vectors and the data
structures for the extracting area, bounding box and first-order moment of connected
components.

To accumulate the feature vectors of component segments, a data table DT maintains
one feature vector for each label. For a background pixel, nothing needs to be saved
in DT . For a new label pattern, the initial feature vector IFV of the current pixel
(x, y) is written to DT at label LX . For a label copy pattern, the current pixel’s
IFV is combined with the feature vector stored to DT . If a merger pattern occurs,
the feature vectors of the object labels in Lη are combined with the IFV and stored
in DT [Lmin], the data table entry at index Lmax is invalidated. The operations
to update data table DT at position (x, y) are given in Pseudocode 1 (data table
update operations). ’[67]

43

i
i

“dissertation” — 2017/11/5 — 13:24 — page 44 — #44 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Pseudocode 1: Data table update operations. [67]

1 if Lη = ∅ then //New label pattern
2 DT[LX] := IFV

3 else if ¬MergerPat then //Label copy pattern
4 DT[LX] := DT[Lmin] ◦ IFV

5 else if MergerPat then //Merger pattern
6 DT[LX] := DT[Lmin] ◦ DT[Lmax] ◦ IFV

7 DT[Lmax] := ∅

2.3.4 Non-root Label Selection

’Definition 19. Reachable: The vertices assigned to L at a position of rightPos and
their parent vertices are reachable. The set Vreachable contains all reachable vertices.
A label is called reachable if its vertex of the label graph F is in Vreachable.

Vreachable = {L[i] ∪ parent(L[i]) : i∈ rightPos } (2.24)

If a label of Lη assigned to LX is not associated with a root vertex, that label is
reachable and stale. This requires an additional lookup to determine the root vertex.
The valid flag VF is used to check whether a label is associated with a root vertex
or not. If a non-root label is assigned to LX , the feature vectors of the object labels
in Lη are combined and stored to data table entry DT [LX] for a later combination
with the feature vector of the root of LX . The non-root label is pushed onto the
label stack (LS) until its root appears in Lη. To avoid duplicate entries which lead
to increased memory requirements and processing times, a label is only added to
LS if it is different to the top entry LS[u− 1].

LS[u] :=LX

u :=u + 1
when ¬VF [LX] ∧ LX ̸= LS[u− 1]. (2.25)

If the top entry of LS[u− 1] is equal to L[C], then LC is associated with the root
vertex. In this case, the feature vector of DT [LS[u− 1]] is combined with and stored
in DT [LC], since they belong to the same connected component. The data table
entry of LS[u − 1] is then invalidated. This enables an on-the-fly processing of
feature vectors of reachable stale labels and is described in detail in Pseudocode 2
(stale label combine operations). ’[67]

44

i
i

“dissertation” — 2017/11/5 — 13:24 — page 45 — #45 i
i

i
i

i
i

2.3 Algorithmic Description of SLCCA

Pseudocode 2: Combine operations for reachable stale label. [67]

1 if LS[u-1]=L[C] then
2 u := u-1
3 if LX ̸= 0) then
4 DT[LC] := DT[LC] ◦ DT[LS[u]] ◦ IFV
5 else
6 DT[LC] := DT[LC] ◦ DT[LS[u]]
7 DT[LS[u]] := ∅

2.3.5 Label Reuse

’The memory requirements of M and DT are proportional to the image area [7].
However, at any time, the number of feature vectors updated in one image row is only
proportional to the image width [62,82]. Memory requirements can be significantly
reduced by recycling labels no longer in use, enabling entries of M and DT to be
reused after a connected component is completed. Rather than use a counter to
provide new labels, labels are obtained from a FIFO R initialised to contain the
elements of the set Rinit, which contains all possible labels.

Rinit = {1, . . . ,
⌈

W
2
⌉
}. (2.26)

Labels which are ready for reuse are queued at the end of R.

An active tag AT is associated with each label to indicate whether the label appears
in the row currently being processed. During the raster scan when a label is assigned
to LX , its entry in AT is updated with the current image row y mod 3.

AT [LX] := y mod 3 when LX ̸= 0. (2.27)

A connected component or component segment with label l is detected as completed
when its active tag AT was last updated in row y − 2 (it was not extended onto in
the previous row y).

end(l) := (AT [l] = (y − 2) mod 3). (2.28)

Of course, all remaining objects are detected as completed at the end of the image.
The data table DT is searched for feature vectors of already ended connected
components once per row in parallel with the update process. When a completed
component is detected, the feature vector from the data table is output.
The data table entry is then cleared to be reused by a subsequent connected
component and the label and associated memory can be reused for subsequent
components by returning the label to the end of the FIFO R.

DT [l] :=∅, ∀l ∈ {1, . . . ,
⌈

W
2
⌉
} ∧ end(l) ∧ VF [l],

l→R.
(2.29)

45

i
i

“dissertation” — 2017/11/5 — 13:24 — page 46 — #46 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Adding a label l to a FIFO, e.g. R, is denoted as l→ R.

After every merger operation, Lmax is no longer required. However, it must not be
reused for one image row since the labelled image L still might contain Lmax in the
current image row to the left of the current position. Writing Lmax to the end of
FIFO R ensures that it is not assigned to a new connected component within the
following image row.

Lmax → R when MergerPat. (2.30)

The reuse of labels in this way requires modifying the method used to determine
Lmin and Lmax. Without label recycling, labels produced by new label operations
strictly increase in scan order. Therefore, realising the ≺-operator as a comparison
is sufficient. By reusing labels, the numeric labels assigned to component segments
do not necessarily increase according to the scan order. Therefore, to realise the
functionality of the ≺-operator with label reuse, augmented labels are introduced.
An augmented label is a two-tuple consisting of the row number rw in which the
label is first assigned and the index which is used as an address to access array data
structures. The elements of an augmented label are referenced using the notation
LX .index to refer to the index of label LX and LX .rw to refer to the row number
of label LX . If an augmented label is used to access an array, its index is used, e.g.
DT [LX] translates to DT [LX .index]. The row number rw is used for decisions in
merger operations, while the index is used for accessing the tables. This ensures
that Lmin is always the label that is created earlier during processing, leading to
correct behaviour [7] when a merger pattern is detected. In this way, Equation 2.14
is modified to:

Lmin :=

0, Lη = ∅,
Lη, ¬MergerPat,

LC , (LAorD.rw > LC .rw ∧ VF [LC])
∨¬VF [LAorD],

LAorD, otherwise.

Lmax :=

LAorD, (LAorD.rw > LC .rw ∧ VF [LC])

∨¬VF [LAorD],
LC , otherwise.

(2.31)

When a new label is assigned to a component segment, it is pulled from the head of
the label reuse FIFO R and the current image row y is assigned to it, i.e. newLabel
as used in Equation 2.15 is modified to

newLabel.rw :=y,

newLabel.lbl←R.
(2.32)

’[67]

46

i
i

“dissertation” — 2017/11/5 — 13:24 — page 47 — #47 i
i

i
i

i
i

2.4 Pseudocode of SLCCA

2.4 Pseudocode of SLCCA

In the following the previously explained constituents of SLCCA are presented as
pseudocode. The line numbers used refer to Algorithm 5 and Pseudocode 3 to
Pseudocode 5. Circled numbers refer to the example in Section 2.4.7.

2.4.1 Forward Raster Scan

The input image I is scanned in forward raster scan order from top left to bottom
right (line 1 - 2) and calls updateNeighbourhood (Pseudocode 3), updateDataStructures
(Pseudocode 5) and resolveStaleLabels (Pseudocode 6) for each visited pixel and
flatten (Pseudocode 4) when the end of an image row is reached (line 3 - 6). In
parallel to the forward raster scan, findFinishedComponents (Pseudocode 7) checks
whether the data table DT contains feature vectors of finished connected components
(line 7) and moves them to the set of completed feature vectors FC to free the entries
of the data structures for feature vectors of subsequent connected components.

Algorithm 5: Pseudocode of SLCCA algorithm.
Input: Binary image I of width W and height H

Output: Set of feature vectors FC

1 for y = 0 to H − 1 do
2 for x = 0 to W − 1 do
3 updateNeighbourhood()
4 updateDataStructures()
5 resolveStaleLabels()
6 flatten()

// Simultaneous read-out of finished feature vectors
7 findFinishedComponents()

2.4.2 UpdateNeighbourhood

The label of the current pixel at position (x, y) is called LX . The labels LA, LB,
LC , LD at the positions A = (x− 1, y − 1), B = (x, y − 1), C = (x + 1, y − 1) and
D = (x − 1, y) are called the neighbourhood of the current pixel LX at position
(x, y). After assigning a label to the current, LA through LD are updated without
accessing the labelled image L (line 8 to 11). Label LC is updated with its parent,
M [L[C]], to identify the label of the root vertex (line 10). Since LA, LD always have
the same label if they are object pixels, LAD is introduced for convenience (line 12
to line 15). An example of these operations is shown in 13 - 15 .

47

i
i

“dissertation” — 2017/11/5 — 13:24 — page 48 — #48 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Pseudocode 3: updateNeighbourhood()
8 LA := LB

9 LB := LC

10 LC := M [L[C]]
11 LD := LX

12 if I[A] = 0 then
13 LAD := LD

14 else
15 LAD := LA

2.4.3 UpdateDataStructures

There are three label patterns with either zero, one or two different object labels in
the neighbourhood of an object pixel which are referred to as new label pattern (line
20), label copy pattern (line 43) and merger pattern (line 27). A label copy pattern
is any pattern in the neighbourhood which is not a new label pattern or a merger
pattern. These patterns are handled by the new label operation (line 21 to 25), the
label copy operation (line 44 to 45) and the merger operation (line 27 - 42) which
change the content of data structures M , VF , DT , AT and S. Examples of these
operations are shown in 2 - 4 .

The initial feature vector (IFV) is the feature vector of a single pixel at position
(x, y). The ◦-operator combines feature vectors. Both IFV and ◦-operator depend
on feature vector which is extracted. A bounding box feature vector consists of two
2-D coordinates, the top left (x1, y1) and bottom right (x2, y2). The IFV and the
◦-operator are in this case defined as:

IFV (x, y) =
(

x, y

x, y

)
,

A ◦B =
(

min(A.x1, B.x1), min(A.y1, B.y1)
max(B.x2, B.x2), max(A.y2, B.y2)

)
.

For extracting the area, it is sufficient to count the number of pixels. In this case
the IFV is equals 1 for and the ◦-operator is an addition.

IFV (x, y) = 1,

A ◦B = A.area + B.area.

For each new label operation, an entry is read off the label reuse FIFO R and assigned
to LX . The data table entry of LX is initialised with the current pixel’s initial
feature vector (IFV), and the VF flag of LX is set to True. A label copy operation
assigns the object pixel in the neighbourhood to LX and combines LX ’s data table

48

i
i

“dissertation” — 2017/11/5 — 13:24 — page 49 — #49 i
i

i
i

i
i

2.4 Pseudocode of SLCCA

entry, DT [LX], with the initial feature vector of the current pixel IFV (x, y). For
each merger operation there are two different object labels in the current pixel’s
neighbourhood: LAD and LC . If LAD precedes LC in raster scan order (LAD ≺ LC),
LAD is assigned to Lmin and LC to Lmax. If LC precedes LAD (LC ≺ LAD), LC is
assigned to Lmin and LAD to Lmax. The merger table M is updated to contain a
directed edge from Lmax to Lmin (line 39). A merger operation also combines the
feature vectors at DT [Lmin] , DT [Lmax] and IFV (x, y) and stores it to DT [Lmin].
The entry of DT [Lmax] is invalidated and the valid flag VF [Lmax] of Lmax is set to
False. The label Lmax is added to R for reuse. However, the reuse FIFO R must
ensure that when a label is added, it is not assigned to L for the next W pixels in
the raster scan. For a propagating merger pattern LAD precedes LC , LAD ≺ LC .
To propgate the minimum label Lmin into the next pixel’s neighbourhood, LC is
updated with Lmin (line 31, 10 - 11). For a non-propagating merger pattern LAD

succeeds LC , LAD ≻ LC . The non-propagating merger operation pushes the label
pair {Lmin, Lmax} onto the stack S (line 34, 4 - 6). To detect finished connected
components, the active tag AT of LX is updated with y mod 3, where y is the
current row number.

Lines 46 and 47 of the updateDataStructures() are discussed together with re-
solveStaleLabels in Section 2.4.5.

2.4.4 Flatten

At the end of each image row, each directed rooted tree of the forest structure in
M is flattened. In this way, when processing the next image row a single lookup
is sufficient to yield the root label for each label appearing in the neighbourhood.
This is realised by popping the directed edges off S and using them to update M

with M [Lmax] := M [Lmin] (line 16 - 18). An example for the flatten operation is
given in 7 to 9 .

Pseudocode 4: flatten()
16 while ¬S.empty do
17 {Lmin, Lmax} := S.pop

18 M [Lmax] := M [Lmin]

49

i
i

“dissertation” — 2017/11/5 — 13:24 — page 50 — #50 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Pseudocode 5: updateDataStructures()
19 if I[X] = 1 then

// New label pattern
20 if ¬I[A] ∧ ¬I[B] ∧ ¬I[C] ∧ ¬I[D] then

// New label operation
21 nl := R.pop

22 LX := nl

23 M [LX] := LX

24 VF [LX] := True

25 DT [LX] := IFV (x, y)
26 else

// Merger pattern
27 if (I[A] ∨ I[D]) ∧ I[C] ∧ (LAD ̸= LC) then

// Merger operation
28 if LAD ≺ LC then
29 Lmin := LAD

30 Lmax := LC

31 LC := Lmin

32 else
33 Lmin := LC

34 Lmax := LAD

35 S.push({Lmin, Lmax})
36 if VF [Lmax] then
37 R.push(Lmax)
38 LX := Lmin

39 M [Lmax] := Lmin

40 VF [Lmax] := False

41 DT [Lmin] := DT [Lmin] ◦DT [Lmax] ◦ IFV (x, y)
42 DT [Lmax] := ∅

// Label copy pattern = ¬New label pattern ∧ ¬Merger
pattern

43 else
// Label copy operation

44 LX := posMin(LAD, LB , LC)
45 DT [LX] := DT [LX] ◦ IFV (x, y)
46 if ¬VF [LX] ∧ LS.head ̸= LX then
47 LS.push(LX)

48 AT [LX] := y mod 3
49 else
50 LX := 0
51 L[(x, y)] := LX

50

i
i

“dissertation” — 2017/11/5 — 13:24 — page 51 — #51 i
i

i
i

i
i

2.4 Pseudocode of SLCCA

2.4.5 ResolveStaleLabels

Stale labels require two lookups in M to yield their root label. This is a result of
a combination of two merger patterns which result requires special treatment. A
detailed analysis on pattern and configurations of the forest structure in M this
applies to is given in [66].

For realising a hardware architecture it is more efficient to delay the second lookup
to the next postion in the image row it is contained in, instead of carrying out two
lookups in M per processed pixel for stale labels [66].

The parent of a stale label is always a non-root label, which valid flag was set
to False by a previous merger operation. This is used to detect when a non-root
label is assigned to LX . Then, it is push onto the label stack LS (line 47 of
updateDataStructures, 15).

If the label at the head of LS is equals to the label at L[C] (line 52, 16), LC is
detected to be its root label (17) and their feature vectors are combined 57. If
the current pixel LX is an object pixel, its IFV is combined with the resulting
feature vector, as well(line 55). The resulting combined feature vector is stored to
DT [LC], the entry of DT [L[C]] is invalidated. Using two lookups per pixel instead
of one, simplifies the algorithm and makes resolveStaleLabels superfluous at the cost
of performance. For the hardware architecture in [66] adding a second lockup for
each pixel halves the throughput. On a general purpose processor this might result
in similar performance.Two lookups per pixel are carried out by replacing line 10
with LC := M [M [L[C]]].

Pseudocode 6: resolveStaleLabels()
52 if LS.head = L[C] then
53 nonRoot := LS.pop

54 if I[X] = 1 then
55 DT [LC] := DT [LC] ◦DT [nonRoot] ◦ IFV (x, y)
56 else
57 DT [LC] := DT [LC] ◦DT [nonRoot]
58 DT [nonRoot] := ∅

51

i
i

“dissertation” — 2017/11/5 — 13:24 — page 52 — #52 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

2.4.6 FindFinishedComponents

In parallel to assigning labels to L and extracting feature vectors, findFinishedCom-
ponents() continuously checks which feature vectors are associated with already
finished connected components. Every label which was assigned to a pixel in the
previous row, but is not assigned to LX in the current row, belongs to a finished
connected component, i.e. the label and the associated entries in M , DT , AT and VF

can be reused immediately. For this purpose the active tag AT was introduce, which
is updated with y mod 3 if LX is an object pixel (line 48 of updateDataStructures()).
A finished connected component can, therefore, be reliably identified if either the
end of I is reached or its active tag AT was not updated in the last time two rows
above the current (line 61). The label of a finished connected component is recycled
to R, its feature vector is added to the set of finished connected components FC,
and the assoicated data table entry is invalidated (line 63 - 66, 18).

Pseudocode 7: findFinishedComponent()
59 i := 1
60 while True do
61 if (AT [i] = (y − 2) mod 3) ∨ (end of image) then
62 if DT [i] ≠ ∅ then
63 FC := FC ∪DT [i]
64 DT [i] := ∅
65 VF [i] := False

66 R.push(i)
67 i := (i + 1) mod NL

52

i
i

“dissertation” — 2017/11/5 — 13:24 — page 53 — #53 i
i

i
i

i
i

2.4 Pseudocode of SLCCA

2.4.7 Step-by-step Example of SLCCA

Figure 2.8 to Figure 2.12 show the contents of all data structures for carrying out
Algorithm 5 on an example image which contains a connected component of a
complex pattern. The binary image shown is I, where a black pixel is an object
pixel and a white pixel background. The labels of L are shown on top of the binary
image. The current pixel at position (x, y) is marked blue. Its neighbour labels LA,
LB, LC , and LD are hatched red. The contents of the data structures present the
state after a pixel has been assigned to the current pixel, just before processing the
next pixel. There are some steps showing intermediate states. These are mentioned
in the figure caption.

53

i
i

“dissertation” — 2017/11/5 — 13:24 — page 54 — #54 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

1

1
2
3
4
5

M
0
0
0
0
0

VF
False
False
False
False
False

AT
0
0
0
0
0

DT
∅
∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

2

1
2
3
4
5

M
1
0
0
0
0

VF
True
False
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–1,1⌟
∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1

3

1
2
3
4
5

M
1
2
0
0
0

VF
True
True
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–0,0⌟
⌜2,0–3,0⌟
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1 2 2

4

1
2
3
4
5

M
1
2
3
4
4

VF
True
True
True
True
False

AT
2
2
1
2
1

DT
⌜0,0–0,5⌟
⌜2,0–10,5⌟
⌜8,2–8,4⌟
⌜4,3–6,5⌟
∅

S

5→4

LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2 2
3
3
3

2 2
2
2
2
2

Figure 2.8: Step 1 : Start of raster scan. Step 2 : New label operation. Step 3 :
Label copy operation. Step 4 : Non-propagating merger operation.

54

i
i

“dissertation” — 2017/11/5 — 13:24 — page 55 — #55 i
i

i
i

i
i

2.4 Pseudocode of SLCCA

5

1
2
3
4
5

M
1
2
3
3
4

VF
True
True
True
False
False

AT
2
2
2
2
1

DT
⌜0,0–0,5⌟
⌜2,0–10,5⌟
⌜4,2–8,5⌟
∅
∅

S

5→4
4→3

LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2

3

2
3
3
3

2 2
2
2
2
2

6

1
2
3
4
5

M
1
2
2
3
4

VF
True
True
False
False
False

AT
2
2
2
2
1

DT
⌜0,0–0,5⌟
⌜2,0–10,5⌟

∅
∅
∅

S

5→4
4→3
3→2

LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

7

1
2
3
4
5

M
1
2
2
3
4

VF
True
True
False
False
False

AT
2
2
2
2
1

DT
⌜0,0–0,5⌟
⌜2,0–10,5⌟

∅
∅
∅

S

5→4
4→3

LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

8

1
2
3
4
5

M
1
2
2
2
4

VF
True
True
False
False
False

AT
2
2
2
2
1

DT
⌜0,0–0,5⌟
⌜2,0–10,5⌟

∅
∅
∅

S

5→4

LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

Figure 2.9: Step 5 : Non-propagating merger operation. Step 6 : Non-propagating
merger operation. Step 7 : First step of flatten(): Flattening of label 3.
Step 8 : Flattening of label 4.

55

i
i

“dissertation” — 2017/11/5 — 13:24 — page 56 — #56 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

9

1
2
3
4
5

M
1
2
2
2
2

VF
True
True
False
False
False

AT
2
2
2
2
1

DT
⌜0,0–0,5⌟
⌜2,0–10,5⌟

∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2 2
3
3
3

2 2
2
2
2
2

10

1
2
3
4
5

M
1
1
2
2
0

VF
True
False
False
False
False

AT
0
0
2
2
1

DT
⌜0,0–10,6⌟

∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
2

2 2

5

2

4

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

11

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
2
2
1

DT
⌜0,0–10,6⌟

∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
1

2 2

5

2

4

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

12

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
1
2
0

DT
⌜0,0–10,6⌟

∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
1

2

1

2

5

2

4

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

Figure 2.10: Step 9 : Flattening of label 5. Step 10 : Propagating merger operation
(Table contens before assinging Lc = Lmin are shown). Step 11 :
Propagating merger operation (Table contents after assinging Lc =
Lmin are shown). Step 12 : Propagation of the previous LC in the next
neighbourhood.

56

i
i

“dissertation” — 2017/11/5 — 13:24 — page 57 — #57 i
i

i
i

i
i

2.4 Pseudocode of SLCCA

13

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–10,6⌟

∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
2

2

1

2

5

2

4

2

4
4
4

2

3

2
3
3
3
3

2

2

2
2
2
2
2

14

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–10,6⌟

∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
2

2

1

2

5

2

2

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

15

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–10,6⌟
⌜5,6–5,6⌟
∅
∅
∅

S LS

2

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
2

2

1

2

5

2

2
2

2

4
4

2

3

2
3
3
3

2

2

2
2
2
2
2

16

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–10,6⌟
⌜5,6–5,6⌟
∅
∅
∅

S LS

2

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
2

2

1

2

5

2

4
2

2

4
4

2

2

2
3
3
3

2

2

2
2
2
2
2

Figure 2.11: Step 13 : Neighbourhood before assiging Lc = M [L[C]]. Step 14 :
Neighbourhood after assiging Lc = M [L[C]]. Step 15 : Propagation of
the previous LC in the next neighbourhood. Step 16 : Detection that
LS.head = L[C].

57

i
i

“dissertation” — 2017/11/5 — 13:24 — page 58 — #58 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

17

1
2
3
4
5

M
1
1
2
2
2

VF
True
False
False
False
False

AT
0
0
0
0
0

DT
⌜0,0–10,6⌟

∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
1

2

1

2

5

2

4
2

2

4
4

2

2

2
3
3
3

2

1

2
2
2
2
2

18

1
2
3
4
5

M
1
1
2
2
2

VF
False
False
False
False
False

AT
0
0
0
0
0

DT
∅
∅
∅
∅
∅

S LS

x=0 1 2 3 4 5 6 7 8 9 10
y=0

1
2
3

4
5
6

7
8

1
1
1
1
1
1

1

2
2
2
2
2
2

2

1

2

5

2

4
2

2

4
4

2

3

2
3
3
3

2

1

2
2
2
2
2

Figure 2.12: Step 17 : resolveStaleLabels: Combination of feature from DT [2] and
DT [1]. Step 18 : Read-out of finished feature vector of the finished
connected component.

58

i
i

“dissertation” — 2017/11/5 — 13:24 — page 59 — #59 i
i

i
i

i
i

2.5 Experimental Results and Discussion

2.5 Experimental Results and Discussion

’Recently published CCA and CCL algorithms, such as the algorithms by Lacassagne
et al. [14,76] and He et al. [48] are tailored to the cache hierarchy of general-purpose
processors (GPP) which consist of several levels of on-chip and off-chip memory.
For such processors, the average number of clock cycles to process a pixel of a
random image is a meaningful metric to compare CCA or CCL algorithms [11].
However, to determine how well a CCA or CCL algorithm is suited to a hardware
architecture, depends on the interaction of the algorithm with the basic building
elements of the hardware device used (e.g. FPGA, ASIC, GPP) and the arrangement
of these elements. Especially for FPGA architectures, the freedom to arrange the
basic building elements (e.g. Registers, LUTs and BRAMs) of the hardware device
facilitates the use of multiple levels of parallelism. As the use of multiple levels of
parallelism accelerates processing of image data with CCA and CCL algorithms,
processing bottlenecks or I/O bottlenecks are avoided, too.

The number and speed of lookup operations are crucial for carrying out CCA and
CCL, as discussed in the introduction. Since hardware architectures realised on
ASIC or FPGA do not have a fixed memory model, like a GPP, the three available
memory types on-chip registers, on-chip memory and off-chip memory are arranged
and connected to maximise lookup operations and to provide data at the exact time
they are required. The bandwidth of on-chip registers and memory is significantly
higher and the latency is significantly lower than off-chip memory; however, the
number of on-chip memory bits is lower, as well. Therefore, SLCCA is designed to
fit completely in on-chip registers and on-chip memories.

Unlike in a cache hierarchy where the cost of a read/write operation depends on the
position of the data being accessed, this memory model provides random read/write
operations at constant cost. Therefore, the total number of memory operations
required to process an image provides a good prospect on how suitable a CCA or
CCL algorithm is for a hardware architecture.

To compare different variants of CCA or CCL algorithms with different numbers of
passes, different scan modes and different set merging algorithms, the number of
memory access instructions (MAIs) are taken into account.

Definition 20. Memory access instruction: A memory access instruction is a single
read access from or a single write access to an indexed data structure. ’[67]

2.5.1 An Analysis of the Memory Access Instructions of SLCCA and
State-of-the-Art Algorithms

’To compare the number of memory access instructions of the SLCCA algorithm to
other CCA and CCL algorithms, the following cost metric is applied:

59

i
i

“dissertation” — 2017/11/5 — 13:24 — page 60 — #60 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

• Successive read instructions from the same position of a data structure are
buffered in a register and are, therefore, counted as one memory access in-
struction.

• Successive write instructions to the same position of a data structure are
buffered in a register and are, therefore, counted as one memory access in-
struction.

• Receiving the input image I as a stream (as in the SLCCA algorithm) is not
a memory access instruction per se, i.e. requires zero MAIs. Though, for a
fair comparison, these read accesses are counted as one MAI each (effectively
streaming from memory).

This metric does not try to show which CCA algorithm runs the fastest on an
existing processing architecture such as a general purpose processor, but provides
a prospect on the speed of a CCA or CCL algorithm when realised as hardware
architecture. In fact, the results of [14] show that Light Speed Labeling (LSL) by
Lacassagne et al. requires the smallest number of processing cycles per pixel on Intel
and ARM processors. ’[67]

The diagrams in Figure 2.13(a) to 2.13(e) depict the amount memory access in-
structions (MAIs) the algorithms SLCCA, HCS, LSL, CT and RQU require to
extract the bounding box and area feature vectors for each connected component
of the input image. RQU refers to Rosenfeld’s classical algorithm [102] applying
Quick-Union. The input image is a random image with an object pixel density from
0% to 100%. The different colours of the stacked diagrams in Figure 2.13 show the
number of MAIs on each of the data structures used. The total number of MAIs is
shown by the upper boundary of the diagrams.
All raster-scan algorithms (2.13a to 2.13d) access each pixel of the input image I

exactly once, as indicated by the brown bar at the bottom of the diagrams. Only
CT has to access some pixels of I multiple times due to the data-dependent contour
tracing.
Feature vectors are stored in the data table DT . According to the metric defined at
the beginning of this section, DT (F in Figure 2.13b) is only accessed and updated
at the end of a run of object pixels for raster-scan algorithms. Therefore, the access
pattern of these algorithms in relation to the object pixel density is quite similar:
For a blank image there is no MAI on DT ; for 100% object pixel density the number
of MAIs is twice the image height. This factor of two corresponds to one read and
one write access on DT per row. Since the number of merger patterns in Figure
2.13 increases until 50% object pixel density is reached and decreases thereafter, the
maximum number of MAIs on DT is around 50% object pixel density.

The SLCCA algorithm is designed to access all data structures (except for stack S) in
parallel. The number of MAIs carried out simultaneously depends on the maximum
number of MAIs on a single data structure of the set of parallel data structures.

60

i
i

“dissertation” — 2017/11/5 — 13:24 — page 61 — #61 i
i

i
i

i
i

2.5 Experimental Results and Discussion

In addition, the MAIs resulting from operations on stack S have a sequential data
dependency, and are executed after the parallel MAIs, mentioned before.

Discussion of the memory access instruction diagram of SLCCA

Figure 2.13(a) shows the MAIs on the data structures of SLCCA. The number of
accesses on the merger table M is equal to the number of pixels in the image. This
is a consequence of the single lookup property of SLCCA. The number of MAIs on
the reuse FIFO R is highest around 50% of object pixel density. This is due to FIFO
R only being accessed when new label patterns or completed connected components
are detected. Since SLCCA does not store a fully labelled image, the data structure
L containing one label for each pixel is only accessed for labels assigned to the last
image row. These accesses to L increase with the number of object pixels. Every
label of L is read once (except for those in the last row) independent of the input
image I. Additionally, one write access is carried out on L for every object pixel in
I.
The amount of MAIs on the chain stack S is highest for the worst case image
which has an object pixel density of 60%, as shown in Figure 2.16(a). For all other
examined random images, the number of MAIs on S is below 1% of the total number
of MAIs for processing these images, and is highest between 40% and 60% pixel
density.
A MAI on LS is only induced by a reachable stale label (see Equation 2.25), i.e.
occurs very seldom in random images. However, it is required to process all possible
patterns in I correctly.

Discussion of the memory access instruction diagram of LSL

The diagram in Figure 2.13(b) shows the MAIs on the data structures of LSL. The
data structures compared are: ER which holds relative labels, ERA which holds
absolute labels, RLC which holds run-length encoded image segments, EQ which
holds equivalence information and F which holds feature vectors.

There is one write instruction on ER for each pixel in the image and two read
instructions for each run of object pixels in an image row. This is reflected in an
increased number of MAIs on ER of around 50%, and an equal number of MAIs at
0% and 100% object pixel density. The ERA data structure is written once for each
run of object pixels in an image row, and read when a merger pattern is detected.
For each run of object pixels there is a write access on EQ and two read accesses for
each merger pattern detected in the image. The RLC data structure, which stores
the coordinates of the object pixel runs, is read twice and written once for each run
of object pixels.
The access pattern to ER, ERA and RLC over the object pixel density is quite
similar: There are much fewer runs and merger operations at 0% and 100% object
pixel density, i.e. there are very few MAIs. The number of MAIs increases from a

61

i
i

“dissertation” — 2017/11/5 — 13:24 — page 62 — #62 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

(a) SLCCA (b) LSL

(c) HCS (d) Patterns in HCS

(e) RQU (f) CT

Figure 2.13: Memory access instructions on different data structures for random
input images of size 512×512 of different pixel densities: (a) SLCCA [65],
(b) LSL [76], (c) HCS [48], (e) RQU, (f) CT [17]. Sub-figure (d) shows
the number of patterns and iterations as an aide to understand sub-figure
(c).

62

i
i

“dissertation” — 2017/11/5 — 13:24 — page 63 — #63 i
i

i
i

i
i

2.5 Experimental Results and Discussion

minimum at 0% until it reaches its maximum at around 50% object pixel density. It
then decreases at about the same rate until 100%. The number of MAIs at 0% and
100% object pixel density are approximately equal.

Discussion of the memory access instruction diagram of HCS

In the diagram in Figure 2.13(c), the number of MAIs on the data structures of HCS
are depicted. The data structures compared are: R which holds the representative
label for each run, Next which holds the label of the successor of each run, Run_se

(a combination of run_s and run_e from [50]) which holds the horizontal start and
end coordinate of each run, Last which holds the label of last element in a chain of
runs, Run which holds the label of the parent of each run and DT which holds the
feature vectors.

Figure 2.13(d) shows the number of new label patterns, merger patterns and runs
detected by HCS. For both diagrams, random images with the dimensions 512× 512
pixels and 0% to 100% of object pixel densities are used. The number of MAIs on
the data structure Run increases with the number of runs in the input image I, as
well as the number of MAIs on R, which contains the representative labels for each
run. The MAIs on Next and Last are highest between 10% and 40% object pixel
density. This is a result of a peak in the number of merger patterns in I, as shown
in Figure 2.13(d). Next and Last are only accessed for new label patterns and when
combining runs after detecting a merger pattern.

Discussion of the memory access instruction diagram of RQU

The diagram in Figure 2.13(e) shows the MAIs on the data structures of (RQU).
In the first pass of this two-pass algorithm, one write instruction is carried out
for each new label pattern on the merger table M . For each merger pattern, one
write and at least two read instructions are performed on M . There are more read
instructions dependent on the height of the trees in the union-find data structure
stored in M , which are a result of the pixel patterns in I. To find the representative
labels for each pixel in the second pass, at least one read instruction on M is required
for each object pixel of I. The majority of the accesses on M is independent of the
pixel patterns in I. The increasing number of merger pattern around 50% object
pixel density is also reflected in the number of MAIs on M , as shown in Figure
2.13(e).
There are up to three read instructions per pixel on the labelled image L in the first
pass: zero MAIs for each background pixel in I, three for each merger pattern and
one for new label patterns or label copy patterns.
In the first pass, there is one write MAI on L independent of the pixel pattern in
I. This corresponds to the number of MAIs at 0% object pixel density. For each
object pixel in I, another write access on L is carried out. In the second pass, there
is one read access on L per pixel to check if it is background. Another write access

63

i
i

“dissertation” — 2017/11/5 — 13:24 — page 64 — #64 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

per object pixel replaces each foreground label with its representative label. Since
RQU is used for feature extraction, the second pass is important to determine the
representative label of each pixel and for accumulating the feature vectors in DT ,
however a fully labelled image is not necessary. The write instruction in the second
pass is, therefore, not considered for fairness in the comparison. The number of
MAIs on L shown in the diagram of Figure 2.13(e) increase continuously from 0% up
to a density of approximately 60%, and decreases thereafter due to the decreasing
number of merger patterns. At 0% density and 100% density the number of MAIs
on M is equal. The number of MAIs on L at 100% density is 50% higher than at
0% density due to the read access in the second pass.

Discussion of the memory access instruction diagram of CT

The CT algorithm [17] starts reading the input image I in raster scan order. This
results in the number of MAIs on I to be equal to the number of pixels in the input
image. This is most obvious for the number of MAIs on I in the diagram in Figure
2.13(f) for 0% and 100% object pixel density. The MAIs on I exceeding this level
are from tracing contours and are highest around 40% of object pixel density. The
MAIs on L consist of two parts: label propagation and contour tracing. The number
of MAIs increases with the number of object pixels in I, which is clearly visible by
comparing the number of MAIs on L at 0% and 100% object pixel density. The
MAIs on L also depend on the length of the contours: the longer a contour is, the
more MAIs on L are required to trace it. Since the total number of pixels in the
image is constant, the average area of the associated connected components declines
with the length of its contours in the image. A result of this might be the almost
constant number of MAIs above 40% object pixel density. Features are extracted by
following the extracted contours from an image. For every pixel of a contour, DT is
accessed once for reading and once for writing.

64

i
i

“dissertation” — 2017/11/5 — 13:24 — page 65 — #65 i
i

i
i

i
i

2.5 Experimental Results and Discussion

Figure 2.14: Comparison of the number of memory access instructions (MAIs) for
processing random images with different object pixel densities. MAI s:
sum of MAIs. MAI p: number of parallel MAIs. [67]

2.5.2 Comparison of the Memory Access Instructions of SLCCA to
State-of-the-Art Algorithms

’Figure 2.14 depicts the number of MAIs for extracting the feature vectors of the
connected components in a random image of 512× 512 pixels with SLCCA, LSL [76],
HCS [48], CT [17] and RQU [102]. Both HCS and LSL encode and process pixel
runs from the input image, which explains the large difference of MAIs between
an empty/filled image and an image with object pixel density around 50%. The
number of MAIs of SLCCA increases with the object pixel density, since it processes
pixel by pixel instead of runs. In the diagram in Figure 2.14, MAI s shows the sum
of MAIs on all data structures and MAI p shows the number of parallel MAIs for
SLCCA processing random images of different object pixel densities. The MAIs in
HCS, LSL, CT and RQU have serial data dependencies, i.e. the total number of
MAIs on their data structures are used for the comparison. The number of parallel
MAIs required for SLCCA is almost constant for processing random images of diffent
object pixel densities, as all memory accesses except for reading the stack S can be
performed in parallel. The sequential read accesses on stack S are at most 3% of
the parallel MAIs for random images with an object pixel density around 40%. For
HCS the number of MAIs is highest at 55% and for LSL it is highest at 56%, i.e

65

i
i

“dissertation” — 2017/11/5 — 13:24 — page 66 — #66 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

Figure 2.15: Comparison of the MAIs for worst case images and reference image
from SIPI database [124]. MAI s: sum of MAIs. MAI p: number of
parallel MAIs.

SLCCA reduces the number of MAIs by a factor of 3.5 compared to HCS and by a
factor of 5 compared to LSL for the chosen image size. ’[67] Since the assumptions
taken for measuring memory access instructions are based on the memory model of
hardware architectures it is expected that this is close to the actual speedup which
can be achieved realising these CCA algorithms as hardware architectures. ’The
bar diagram in Figure 2.15 shows the number of MAIs required for processing chess
board patterns, stair pattern and tree pattern images [26], as well as for processing
natural images from the USC-SIPI database [124].

In the scope of the explored images, the chess board pattern of pixel granularity one
has been shown to require the maximum number of MAIs for LSL, HCS and RQU.
The tree pattern was identified as the worst case pattern for HCS with respect to
the run time on a GPP [26]. However, for all examined image sizes HCS requires
fewer MAIs for processing the tree pattern than for the chess board pattern. The
stair pattern from Figure 2.16 requires the maximum number of MAIs for SLCCA.
To compare the minimal guaranteed processing time, the worst case pattern of each
algorithm is considered. Therefore, the number of MAIs SLCCA required to process
stair pattern images is compared to the other algorithms processing a chess board
pattern and shown in Figure 2.15. Table 2.3 shows the number of MAIs for worst
case patterns normalised to the number of parallel MAIs in SLCCA. This shows

66

i
i

“dissertation” — 2017/11/5 — 13:24 — page 67 — #67 i
i

i
i

i
i

2.5 Experimental Results and Discussion

(a) (b) (c)

Figure 2.16: (a) Chess board pattern, (b) Stair pattern [7] and tree pattern [26].

Algorithm Worst case pattern # MAIs normalised
SLCCA: parallel MAIs stairs 1.0
SLCCA: sum of MAIs stairs 5.18

LSL chess board 8.99
HCS chess board 7.49
RQU chess board 7.99
CT chess board 11.97

Table 2.3: Comparison of MAIs for worst case patterns. [67]

that SLCCA reduces the number of memory access operations for processing worst
case images by a factor of 7 compared to the other algorithms. ’[67]

The diagrams in Figure 2.17 show the scalability of the previously examined CCA
and CCL algorithms for the chess board pattern, the stair pattern, and the tree
pattern (Figure 2.16) for image sizes from 1 Megapixel to 80 Megapixels. The
resulting diagrams suggest that the number of MAIs for processing these images
size scale linearly in the number of pixels for the algorithms examined in Figure
2.17. Figure 2.17(a) & (c) show that SLCCA requires the lowest number of MAIs
for processing the chess board and tree pattern. For processing the stair patterns,
which is the worst case image for SLCCA, the number of parallel MAIs is still 50%
below the second best algorithm, HCS, for this pattern. This is shown in Figure
2.17(b).

For each of the discussed algorithms, Figure 2.17(d) shows the ratio of MAIs required
to process its worst case pattern for image sizes from 1 Megapixel to 80 Megapixels.
It is normalised to the number of parallel MAIs SLCCA requires to process an image
with a stair pattern. This diagram shows that SLCCA requires the fewest amounts
of MAIs for processing its worst case image among the examined CCA and CCL
algorithms.

67

i
i

“dissertation” — 2017/11/5 — 13:24 — page 68 — #68 i
i

i
i

i
i

2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm

(a) (b)

(c) (d)

Figure 2.17: Comparison of scalability of the number of MAIs for increasing image
sizes for (a) chess board pattern, (b) stairs pattern and (c) tree pattern.
The diagram in (d) shows the number of MAIs (for the algorithms’
respective worst case) normalised to SLCCA: MAIp for image sizes up
to 80 Megapixel. MAI p: number of parallel MAIs.

68

i
i

“dissertation” — 2017/11/5 — 13:24 — page 69 — #69 i
i

i
i

i
i

2.6 Summary and Contributions of the SLCCA Algorithm to the State of the Art

2.6 Summary and Contributions of the SLCCA Algorithm
to the State of the Art

The single lookup CCA algorithm, SLCCA, which was introduced and described in
detail in this chapter is an improvement to the state of the art on several levels, as
pointed out in the following.

• Reduction of number of memory access instructions (MAIs): SLCCA uses an
improved union-find algorithm allowing the find operation to be replaced by
single lookups. This reduces the number of memory accesses by a factor of
3.5 for random images and by a factor of 7 for worst case images compared to
other state-of-the-art CCA/CCL algorithms.

• Using a novel control structure to detect the last pixel of an image object in
an image stream at the earliest possible point in time: This allows to reduce
processing latency and allows the memory resources used by an object to be
freed earlier which contributes to reducing memory resources.

• A novel label recycling scheme reducing the number of label lookups per pixel:
The label translation scheme of [83] is simplified by reducing the number of
lookups from two to one per label.

• A method for out-of-order labelling for the efficient recycling of labels: As a
consequence of the novel label recycling, augmented labelling is introduced,
a technique to build consistent rooted tree data structures for components
labelled out-of-order.

• Detection and correct processing of image patterns not considered in previous
publications: At the algorithm level, image patterns (e.g. Figure 3.10) were
not taken into account in previous hardware architectures [7, 58] resulting in
incorrect labelling. In the SLCCA algorithm (laying the foundation for the
SLCCA architecture in Chapter 3), these patterns are detected and handled
correctly, i.e. arbitrary image patterns can be analysed.

69

i
i

“dissertation” — 2017/11/5 — 13:24 — page 70 — #70 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 71 — #71 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

In this chapter, a hardware architecture for performing connected components
analysis (CCA) on a high-speed pixel stream is presented which uses the SLCCA
algorithm introduced in Chapter 2. The content in this chapter marked by single
quotation marks are from [65].

’ Increasing image resolutions beyond high-definition (2 Megapixel) in consumer
electronics [55] and frame rates above 100 fps in high speed imaging [77] require
high-performance hardware architectures. For connected components analysis, a
number of optimised hardware architectures and software implementations have
been proposed in the last five years, all with the goal of avoiding the performance
bottlenecks due to memory resources or memory bandwidth [33,51,71,76,99,136,
138].

For previous hardware CCA architectures, the required resources are proportional
to the image resolution [7]. In the proposed architecture of the SLCCA algorithm
in this chapter, the required memory resources are proportional to the image
width. This directly affects the throughput that can be achieved with a certain
architecture or hardware device. Any reduction in the hardware resources allows
better performance to be achieved with the same hardware device or allows a switch to
a more energy-efficient or less expensive hardware device. ’[65] This chapter presents
a dedicated hardware architecture for SLCCA which reduces the hardware resources
required compared to other CCA or CCL hardware architectures significantly and
enables extracting image features from HD and ultra-high-definition UHD image
streams with 42% less hardware resources (depending on the features extracted)
than state-of-the-art CCA hardware architectures [83]. ‘Based on these savings,
it is possible to realise an architecture processing video streams of larger images
sizes, or to use a smaller and more energy-efficient hardware devices, or to increase
the functionality of already existing image processing pipelines in reconfigurable
computing and embedded systems.‘[65]

Dedicated CCA Hardware Architecture vs. Software Implementation

’ A challenge for the optimisation of CCA is that most algorithms are sequential
and consist of a combination of compare, lookup and control operations [51]. A
label is assigned to every pixel depending on its neighbourhood’s labels. This data
dependency on the current pixel’s predecessors makes parallelisation non-trivial,

71

i
i

“dissertation” — 2017/11/5 — 13:24 — page 72 — #72 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

but pipeline processing possible. From these data dependencies, it follows that all
operations for the currently processed pixel have to be finished before the operations
on the subsequent pixel can start. Therefore, the throughput depends on the
execution time of the individual operations. Processing the pixel data of an image
in real-time as it is streamed from an image source requires a high-throughput
architecture, especially when a high-speed image sensor is used. Carrying out CCA
on a general purpose processor (GPP) with a multi-core architecture requires a
sequential execution of the comparison and control operations and several memory
operations per pixel. If the size of the data structures exceeds the size of on-chip
memory of the GPP, slow off-chip memory has to be utilised. The execution time
therefore can be dominated by the latency of the memory operations [10] limiting
the overall throughput of the CCA algorithm and making the performance strongly
dependent on the input data. Making use of a single-pass CCA algorithm on common
GPP architectures might allow the required data structures to be stored in on-chip
memory and solves the problem of memory size. Nevertheless, the available on-chip
memory bandwidth is usually shared among several processing cores reducing the
performance for parallel memory access [43] which might limit the throughput.
General purpose processors (GPP) are only a good choice for CCA or CCL as
long as power dissipation or processing latency is of minor concern. Then, a high
throughput and good scalability can be achieved by distributing the workload over
a set of several GPP or GPGPU systems by either distributing parts of the pixel
stream or assigning each image of the stream to a separate processing unit. In
contrast, when using a dedicated hardware architecture for CCA, all combinational
operations for processing a single pixel of the image can be carried out in a single
clock cycle, some of them in parallel. Several on-chip memory structures ensure a
low latency read and write of image labels at high bandwidth. This allows faster
processing of a single pixel, leading to a high processing throughput with low
latency. The realisation of a dedicated hardware architecture is possible either as an
application specific integrated circuit (ASIC) or on a field-programmable gate array
(FPGA). Compared to a GPP architecture, both alternatives are typically superior
in terms of power dissipation, which is especially important in embedded and mobile
applications. Recent reconfigurable logic devices, FPGAs, consist of lookup tables
(LUTs), registers and on-chip block-RAMs (BRAMs), which can be connected via
a user-programmable connection network [3,134]. For CCA, decisions and control
operations are mapped to LUTs; for each operation requiring memory access a
dedicated on-chip BRAM is assigned. The architecture proposed in this chapter is
customised for (but not limited to) a realisation as a hardware architecture on an
FPGA. A speed-up is gained by distributing the computations to several pipeline
stages working in parallel. The memory bandwidth is achieved by distributing the
memory operations over several on-chip BRAMs. A high throughput by pipeline
processing requires each pipeline stage to have a constant execution time to be able
to keep up with the bandwidth of the image source. The goal of the processing
architecture is to achieve a throughput of one pixel per clock cycle while maximising
the clock frequency. When using BRAM resources having one clock cycle latency

72

i
i

“dissertation” — 2017/11/5 — 13:24 — page 73 — #73 i
i

i
i

i
i

to represent data structures (e.g. digraphs), only one lookup per clock cycle is
possible to achieve a throughput of processing one pixel per clock cycle. Recent
CCA hardware architectures, as well as the architecture proposed in this chapter,
are close to processing one pixel per clock cycle. This is achieved by maintaining
rooted trees with a height of one for labels to be processed in the current row. In
the proposed architecture, labels already processed in the current image row may
have a bigger tree height. A tree height of one at the beginning of the next image
row is achieved by compressing the tree structure at the end of each row [7, 83].
This reduces the number of lookup operations to one lookup per clock cycle plus
a maximum overhead of 17% at the end of the image row for tree compression, as
shown in Section 3.1.2. ’[65]

73

i
i

“dissertation” — 2017/11/5 — 13:24 — page 74 — #74 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Abbreviation Name
AT Active tags
DT Data table
FV Feature vector
H Image height
I Source image
L Labelled image

LS Label stack
M Merger table
NL Number of labels
NM Number of merger patterns per row
R Reuse FIFO

RB Row Buffer
S Stack

TT Translation Table
VF Valid flags
W Image width

WIDX Width of a label index
WAL Width of an augmented label
WF V Width of a feature vector

[65] ©2015 IEEE

Table 3.1: Nomenclature used in this Chapter. [65]

3.1 Design of the Hardware Architecture

’In the following, the nomenclature defined in Table 3.1 is used. The top level block
diagram of the SLCCA architecture is depicted in Figure 3.1. It processes a binary
input image I in forward raster scan order, as shown in Figure 3.2. The input image
I is of size W ×H and consists of object pixels and background pixels represented by
1 and 0. Two object pixels p1, p2 are connected if one pixel is in the other pixel’s
8-neighbourhood or a path of neighbouring object pixels between p1 and p2 exists.
A set of object pixels of I is called a connected component if every pair of pixels in
the set is connected. A subset of connected object pixels of a connected component
is called a component segment. The feature vector (FV) of a connected component
or component segment is an n-tuple composed by functions of the component’s
pattern [45]. Connected components analysis is concerned with deriving the feature
vector for each connected component from the binary input image I. The hardware
architecture associates every pixel with its connected component by assigning a label
and extracts the component’s feature vector. Label 0 is reserved for background

74

i
i

“dissertation” — 2017/11/5 — 13:24 — page 75 — #75 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

Component
association

Feature vector
collection

1 bit

Pixel
valid

Pixel
value

1 bit

1 bit

FV
valid

FV
data

WFV bit

SLCCA hardware architecture

Scan control

Label
selection

4×WAL bit WIDX+WAL +1bit

Neighbourhood
context

Label
management

Row
buffer

WFV bit

WIDX

bit

WAL bit

WAL bit

2×WIDX bit

WIDX

bit

WAL bit

1 bit

[65] ©2015 IEEE

Figure 3.1: Block diagram of the SLCCA hardware architecture for connected com-
ponent analysis. [65]

pixels. A connected component is completed when a label has been assigned to all
of its associated pixels. This is detected as defined in Equation 2.28.

For the selection of the label LX assigned to the current pixel I[X] at position X,
the neighbourhood context provides the labels at position A, B, C and D labelled LA,
LB , LC and LD respectively, as depicted in Figure 3.2. To simplify the discussion,
LAorD is introduced to refer to the label LA or label LD since if I[A] and I[D] are
both object pixels they will always have identical labels: LAorD = LA = LD. If a
label is used as a Boolean variable in the following, true indicates a label associated
with an object pixel and false indicates a label associated with a background pixel.

There are three label patterns with either zero, one or two different object labels in
the neighbourhood context of an object pixel which are referred to as new label pattern,
label copy pattern and merger pattern, respectively. These patterns are handled by the
new label operation, the label copy operation and the merger operation which change
the content of the data structures in the neighbourhood context, the component

75

i
i

“dissertation” — 2017/11/5 — 13:24 — page 76 — #76 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

LX

Row buffer
labels

Discarded
labels

Unlabelled
pixels

Neighbourhood
labels

X
A CBB
DD

[65] ©2015 IEEE

Figure 3.2: The four different groups of image labels. [65]

association and the feature vector collection. Two different object labels in the
neighbourhood context where I[X] = 1 obviously belong to the same connected
component. For this case, the merger pattern induces a merger operation: the
smallest object label of the neighbourhood context is assigned to LX and merging
labels are stored on the merger table M (see 3.1.2). A merger operation on two labels
l0 and l1 is referred to as merging l0 and l1. A merger operation on two component
segments s0 and s1 of the same connected component is referred to as merging the
component segments s0 and s1. The feature vector associated with each label is
stored in the data table DT and is updated every time its object label is assigned to
LX . The new label operation and the label copy operation are discussed in Section
3.1.2. ’[65]

3.1.1 Neighbourhood Context and Row Buffer

’The SLCCA architecture is based on the single-pass CCA algorithm from [7]. For
this single-pass CCA algorithm, the decision of which label to assign to LX only
depends on the labels of the previous and the current image row, in particular the
labels of the current row left of X and the labels from A to the end of the previous
row. This architecture distinguishes between four different types of labels, as shown
in Figure 3.2:

• Neighbourhood labels (cross-hatched) LA through LD are required in the current
clock cycle to determine the current pixel’s label LX .

• Row buffer labels (hatched) are required for labels associated with pixels
processed in subsequent clock cycles.

• Discarded labels (marked grey) which are not required for further decisions.

• Unlabelled pixels (marked white) which have not been processed yet.

Figure 3.2 shows the source image I, where all pixels before X are already processed
in raster scan order. Only the neighbourhood labels and the row buffer labels are

76

i
i

“dissertation” — 2017/11/5 — 13:24 — page 77 — #77 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

LcLBLA

LD

Neighbourhood context

RB control

Row buffer

LX
LRB

Port0

Port1

Component association

Path compression
logic

Stack S

End of row

1 bit

2×WAL +1 bit

Merger table

1

N
...

L

Lmin Lmax

Merger pattern

W
A

L
+

W
ID

X
+

 1
 b

it

addr1, data1,
wena1

addr0
wena0
data0

q0

q1

W
A

L b
it

W
A

L b
it

Port0

Port1

WAL bit

[65] ©2015 IEEE

Figure 3.3: Architecture of neighbourhood context, row buffer and component asso-
ciation unit at register-transfer level. [65]

relevant to determine the label LX and must be stored for processing subsequent
image rows. Since no labelled image is saved, the label of the current pixel is stored
on the row buffer RB for one image row until it is required again for the decision
process in the row below. The output of RB is connected to and addresses the
merger table discussed in Section 3.1.2.

To parallelise and effectively accelerate the label selection, simultaneous read and
write access to all labels of the neighbourhood context is required. This is realised
by using a register for each of the labels LA to LD. After a merger operation, an
update of LB and LC is required. The next cycle’s LB is assigned the current label
LX . When the next cycle’s LC is an object pixel it needs to be updated in case of a
merger operation when I[x+2, y−1] = 1. These updates are realised by multiplexers
at the input of the registers. The size of the row buffer depends on the image width
W . A label added to the row buffer is not accessed for W − 1 cycles, i.e. it does not
need to be read for the duration of the processing of one image row. This allows a
realisation as a dual-port block-RAM (BRAM). Figure 3.3 shows the architecture of
the neighbourhood context and row buffer on the register-transfer level. ’[65]

3.1.2 Label Selection and Image Component Association

’The label selection unit assigns the minimum object label of the neighbourhood
context to LX and generates control signals to update tables of the component
association unit. When processing the image pixels in raster scan order, different

77

i
i

“dissertation” — 2017/11/5 — 13:24 — page 78 — #78 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

1

2

3

1 2

1

[65] ©2015 IEEE

Figure 3.4: This example image contains patterns inducing a new label 1 , label
copy 2 or merger 3 operation. After the merger pattern at position 3

the merger table entry of 2 points to 1. [65]

initial labels may be assigned to different component segments of a connected
component. The merger table M is used as introduced in Section 2.1. Every
connected component and component segment is identified by the root label of its
tree structure, which points to itself in M .

If the current pixel is an object pixel and all neighbour labels are background, a new
label l is assigned to LX and the merger table entry of l is initialised to point to itself,
i.e. M [l] := l. A label copy operation assigns the object label in the neighbourhood
to LX . In the neighbourhood context of a merger pattern LAorD ̸= LC . To label each
pixel correctly, the minimum label Lmin = min(LAorD, LC) is assigned to LX [7].
All pixels labelled Lmax = max(LAorD, LC) processed before a merger pattern are
already added to the row buffer RB and cannot be changed immediately, therefore
the merger table entry of Lmax is set to point to Lmin, i.e. M [Lmax] := Lmin which
makes Lmin the component segment’s root label.

The merger table M is realised as a BRAM operated in true-dual port mode. One
port is used as a read port to look up the labels at the output of the row buffer;
a merger operation updates the rooted tree data structure F stored in M via the
second BRAM port. This enables continuous lookups in every clock cycle for the
labels at the output of the row buffer, while the rooted tree data structure in M

can be updated simultaneously via the write port.

All not circled numbers in the figures used for the following examples represent
the labels after the operations of the corresponding image pattern are carried out.
Circled numbers in the examples, like 1 , refer to positions in the image where
patterns induce operations. In Figure 3.4 at position 1 through 3 an example for
a new label pattern at 1 , a label copy pattern at 2 and a merger pattern 3 are
given.

A series of merger patterns of the same connected component where LC < LAorD

creates a label chain in M , representing a path in the rooted tree, so that the labels
stored in the row buffer do not yield the root label with a single lookup in M . A
chain is resolved by joining all non-root labels of the chain with the root label of the

78

i
i

“dissertation” — 2017/11/5 — 13:24 — page 79 — #79 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

4 5 6 7

1
2

3
4

[65] ©2015 IEEE

Figure 3.5: Image with chain pattern. By saving the label pair of a merger operation
on the stack S, the content of M (4→ 3→ 2→ 1) is updated at the end
of the image row. Then the content of M is 4→ 1, 3→ 1, 2→ 1. [65]

chain. A reverse scan over the chains is executed to compress the tree in the merger
table M to a height of one. In union-find algorithms this operation is called path
compression [53]. The label pairs consisting of Lmin and Lmax for the reverse scan
are pushed on the stack S by every merger operation where LC < LAorD during the
scan of the image. For every pair of labels popped off the stack S at the end of
the row, the merger table is updated with M [Lmax] := M [Lmin] which eventually
resolves the chains.

An example of an image pattern resulting in a chain is illustrated in Figure 3.5.
The chain generates 3 stack entries. The labels in the neighbourhood context of
positions 4 to 6 lead to merger operations linking the component segments initially
labelled 1 to 4 and push the label pairs (3, 4), (2, 3) and (1, 2) on the stack S. At
the end of the image row (position 7) the merger table M contains a chain where
label 4 points to label 3, label 3 to 2 and label 2 to 1. For labels 3 and 4, a single
lookup in M does not yield their component segment’s root label 1 because of the
chain (4 → 3 → 2 → 1). By popping the stack entries off S in reverse order, the
content of M is compressed by updating the merger table entries of all labels to
point to the root label 1.

The processing of each stack entry consists of one read operation from the stack S

(Equation 2.22), one read and one write operation from merger table M (Equation
2.23) requiring in total three clock cycles. These operations can be pipelined, and
with a dual-port BRAM for the merger table require on average one clock cycle
per update [7]. A maximum chain consisting of ⌈W

2 ⌉ merger patterns is possible in
one image row, therefore the stack depth is ⌈W

2 ⌉. The image pattern creating ⌈W
2 ⌉

merger operations is not the pattern that generates the maximum number of stack
entries averaged over the whole image. The worst case creates a pattern for which
a merger operation is carried out for every 5th pixel of every row. On average, for
processing this worst case image, the number of stack entries after each image row
is ⌈W

5 ⌉ reducing the average throughput by 17% [7]. If the image source inserts a
sufficiently long gap between two rows (e.g. the blanking period of an image sensor),
then real-time processing is possible. Otherwise, a buffer for the pixel stream at the

79

i
i

“dissertation” — 2017/11/5 — 13:24 — page 80 — #80 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

input to cover bandwidth peaks allows real-time processing. For the stack S, write
access is required during processing an image row and read access is necessary at
the end of the row making the realisation as a single port BRAM sufficient. ’[65]

3.1.3 Label Recycling and Feature Vector Collection

’In previous CCA architectures, the memory requirements of M and DT are propor-
tional to the image area. This is because in a worst case image, a quarter of the
pixels can be different connected components [7, 58]. However, at any time in the
raster scan, the number of different labels assigned to pixels in an image row is only
proportional to the image width [82], [62]. Memory requirements can be significantly
reduced by recycling labels no longer in use, enabling entries of M and DT to be
reused after a connected component is completed. The label management unit keeps
a record of the unused labels on the label reuse FIFO R , which is initially filled
with all labels, one through ⌈W

2 ⌉. For each new label operation, an entry is read off
R and assigned to the current pixel. For the reuse of already completed connected
components two scenarios have to be distinguished:

• Recycling Lmax after a merger operation

• Recycling the label of a completed connected component

The recycling of Lmax requires that Lmax is not contained in the row buffer anymore.
To be sure that Lmax is not in the row buffer anymore when it is reused, the label
management unit has to delay the reuse of these labels until W more pixels have
been processed.

Each connected component keeps its label until it is completed. To detect completed
connected components, every label which was assigned to a pixel in the previous
row, but is not assigned to LX in the current row, belongs to a completed object,
i.e. the label and the associated memory resources can be reused immediately.

The position in the image where a label is recycled and added to R depends on the
input image I, therefore the recycled labels on R are not necessarily in numerical
order. The property from [7] that a merger operation always chooses the minimum
label for LX can therefore result in a corrupted merger table M not reflecting
the actual label associations of the image. The image in Figure 3.9 (page 87)
demonstrates a case in which several merger operations create two root labels for
a single connected component by always assigning the minimum label to LX . To
avoid this case, the concept of augmented labels (AL) is introduced. Labels are
augmented with the row number they are generated in, i.e. each label is a two-tuple
consisting of row number (rw) and the index (index). The elements of this two-tuple
are referenced by name in the following: the notation LX .index refers to the index
of label LX and LX .rw refers to the row number of label LX . The rw element
of a label is used to determine which label to associate with the current pixel:
Lmin := LC when LAorD.rw > LC .rw, else Lmin := LAorD. The index element

80

i
i

“dissertation” — 2017/11/5 — 13:24 — page 81 — #81 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

is used to access tables such as the merger table M , e.g. M [LX] is realised as
M [LX .index]. Examples for augmented labels are given in Table 3.2. Augmented
labelling ensures that a merger operation always assigns Lmin to the label created
earlier in the scan process. With augmented labels, the rooted tree data structure
in M always correctly reflects the current structure of not yet completed connected
components at the current position in the raster scan. The index of an augmented
label of a completed connected component is written to the label reuse FIFO R.
The index of Lmax of a merger pattern is added to R by a merger operation. The
condition to delay reuse of Lmax is implicitly fulfilled by using a FIFO to recycle
labels.

To detect completed connected components, an active tag AT is introduced for
each connected component. If during the raster scan a label is assigned to LX , its
entry in AT is updated with y mod 3, where y is the current row number. Any
connected component for which its active tag is not updated in the current image
row is completed (as defined in Section 2.3.5). Their feature vectors are read out and
their labels are recycled. A connected component is completed in row y, when its
label does not appear in row y + 1 of the labelled image L′, therefore, the read-out
and recycling is carried out in parallel to scanning row y + 2. The active tag of a
label ready to be recycled is, therefore, y − 2 mod 3. For a practical and efficient
implementation AT is mapped to a BRAM. This allows up to one label to be recycled
per clock cycle and one feature vector to be read out in parallel with processing
the following row. In this architecture, the recycling process of a label requires
an additional 5 clock cycles of latency until the recycled label is available to be
assigned to a new connected component. This is caused by pipeline registers and
FIFO delays. The number of labels required for processing a worst case image is
therefore ⌈W +5

2 ⌉.

The feature vector (FV) for each connected component is accumulated during the
raster scan and stored to the data table DT . For a new label operation the data
table entry is initialised with the current pixel’s feature vector referred to as the
initial feature vector (IFV). A label copy operation combines LX ’s DT entry with
the IFV and a merger operation combines the DT entries of the two labels and the
IFV. The operator ◦ is defined for combining the feature vectors (see Section 2.3.3).
The combining operation, the data structure in DT and the IFV depends on the
feature vector, as shown in Table 2.2 in Section 2.3.3 which shows an example for
area, bounding box and first order image moment feature vectors.

A new label operation requires one write operation for storing the feature vector, a
label copy operation requires one read followed by a write operation, and a merger
operation requires two reads followed by a write and an invalidation operation of
the data table DT and the active tags AT . Additionally, the read-out of feature
vectors of completed connected components requires one read operation and one
invalidation operation per completed connected component. Therefore, up to five
memory operations per pixel are required. The proposed novel scheduling scheme

81

i
i

“dissertation” — 2017/11/5 — 13:24 — page 82 — #82 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Data table AT VF

Feature vector collection

VC
◦

◦

◦

Label management

mod W
counter

Finished
FVs

1

N

Row
number

R
Augmented

label

FVC-FSM

dtmux

vcmux

q0

q1

VC

IFV

q0
VC

...

RBreg

Label
pattern

LX

Lmin

Lmax q1 Feature vectors

data0
wena0
addr0

addr1
wena1
data1

Reusable labelReusable merger label

Label generator

◦

q0

LS

LC

∅

Port0

Port1

L

∅
res

LVC

mod W
counter

Completed
FVs

[65] ©2015 IEEE

Figure 3.6: Hardware units used for label recycling: the feature vector collection
unit and the label management unit. [65]

for the memory operations makes a single BRAM port sufficient for updating feature
vectors and a second BRAM port for read-out of completed connected components.
This reduces the memory resources required for the data table DT by 50% (from two
dual-port memories to a single dual-port memory) compared to the architectures
from [83] and is a key improvement of the SLCCA architecture.

The architecture of the feature vector collection unit is shown in Figure 3.6 which
shows the hardware units used for label recycling. It contains the finite state
machine scheduling the feature vector update process (FVC-FSM) of the BRAM
storing the data table DT , the active tags ATand the valid flags VF. The Mealy state
diagram of the FVC-FSM is shown in Figure 3.7. The label pattern at the current
position X serves as a condition to determine the FSM’s outputs and the next FSM
state. To save space in Figure 3.7, the new label pattern, label copy pattern and
merger pattern are abbreviated as new label, copy and merger, respectively. The
condition at the top has the highest priority, and if it does not match, the subsequent
condition is evaluated. A stale label pattern is detected by the condition Stale_label
which results from comparing RBreg, buffering the label L[C] (introduced in Section
2.3.1 and used in Equation 2.12), and the label at the head of the label stack LS.
The resolution of a stale label is detected by the condition Stale_resol. Details on

82

i
i

“dissertation” — 2017/11/5 — 13:24 — page 83 — #83 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

S
ta

le
_r

e
so

l

M
e
rg

e
r

M
e
rg

e
r

L
X

O
th

e
rw

is
e

vc
m

u
x/

re
s

d
t m

u
x

a
d

d
r0

w
e
n

a
0

V
C
◦
q

0
◦
IF

V
V

C
◦
q

0
L

m
a
x_

re
g

L
m

a
x_

re
g

1 1

O
th

e
rw

is
e

S
ta

le
 l

a
b

e
l

re
so

lu
ti

o
n

 2

L
X

O
th

e
rw

is
e

vc
m

u
x/

re
s

d
t m

u
x

a
d

d
r0

w
e
n

a
0

V
C
◦
q

0
◦
IF

V
-

V
C
◦
q

0
L

m
in

L
A

0 1

C
o
n

d
it

io
n

O
u

tp
u

ts

C
o
n

d
it

io
n

O
u

tp
u

ts

Im
m

e
d

ia
te

 r
e
so

lu
ti

o
n

vc
m

u
x/

re
s

d
t m

u
x

a
d

d
r0

w
e
n

a
0

C
o
n

d
it

io
n

O
u

tp
u

ts

S
ta

le
_l

a
b

e
l

&
 S

ta
le

_r
e
so

l

N
o
 m

e
rg

e
r

N
e
w

 l
a
b

e
l

S
ta

le
_l

a
b

e
l

&
 S

ta
le

_r
e
so

l
S

ta
le

_r
e
so

l
M

e
rg

e
r

L
X

E
n

d
_o

f_
ru

n
O

th
e
rw

is
e

vc
m

u
x/

re
s

d
t m

u
x

a
d

d
r0

w
e
n

a
0

- 1 - - - - -

C
o
n

d
it

io
n

O
u

tp
u

ts

D
id

_r
e
a
d

L X

a
d

d
r1

w
e
n

a
1

S
ta

le
_l

a
b

e
l

&
 S

ta
le

_r
e
so

l

- V
C

V
C

V
C

V
C

V
C

V
C

- L
C

R
B

re
g

L
C

L
m

in

L
V

C

L
B

0 0 0 0 0 1 0

-
L

V
C - - - - -

C
o
n

d
it

io
n

M
u

x
 s

e
le

ct
vc

m
u

x/
re

s
d

t m
u

x

◦
 q

0
◦
 q

0
◦
IF

V

S
ta

le
 l

a
b

e
l

re
so

lu
ti

o
n

 1

L
X

O
th

e
rw

is
e

vc
m

u
x

d
t m

u
x

a
d

d
r0

w
e
n

a
0

V
C
◦
q

0
◦
IF

V
V

C
◦
q

0
L

B

L
B

0 0

C
o
n

d
it

io
n

O
u

tp
u

ts

- -

a
d

d
r1

w
e
n

a
1

R
B

re
g

2

R
B

re
g

2

1 1

L
X

O
th

e
rw

is
e

V
C
◦
q

0
◦
IF

V
V

C
◦
q

0
L

B

L
B

1 1

C
o
n
d
it
io
n
s

:=
 ¬

L
X
 &

 L
V

C
 &

 ¬
L

B

:=
 (

L
V

C
_r

e
g
 ≠

 L
m

in
_r

e
g
)

&
 ¬

N
e
w

_l
a
b

e
l_

re
g

 &
 ¬

E
n

d
_o

f_
ru

n
_r

e
g

E
n

d
_o

f_
ru

n
D

id
_r

e
a
d

:=
 ¬

V
F

[L
m

in
_r

e
g
]

:=
 (

R
B

re
g
 =

 L
S

h
e
a
d
)

S
ta

le
_l

a
b

e
l

S

ta
le

_r
e
so

l [6
5]

©2
01

5
IE

E
E

Fi
gu

re
3.

7:
Fi

ni
te

st
at

e
m

ac
hi

ne
fo

r
sc

he
du

lin
g

m
em

or
y

ac
ce

ss
es

in
th

e
fe

at
ur

e
ve

ct
or

co
lle

ct
io

n.
[6

5]

83

i
i

“dissertation” — 2017/11/5 — 13:24 — page 84 — #84 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

stale label processing are introduced in Section 3.1.4. The FVC-FSM is connected
to the BRAM ports the address ports (addr), write-enable port (wena), input data
(data) singals and reads the BRAM’s output signals (q) for both port 0 and port
1. The FVC-FSM controls addr0, wena0, addr1 and wena1 directly, and the ports
data0 and q0 are connected with the feature vector cache VC and the IFV via
the multiplexers vcmux and dtmux depending on the label pattern. Port data1 is
always ∅ since it is only used for invalidations. The feature vector cache V C is
realised as a register to store the feature vector associated with the current label
LX to delay a write access to the data table DT . The label associated with the
accumulated feature vector on V C is LV C . The register Lmax_reg contains the label
of Lmax of the pixel processed one clock cycle earlier. The BRAM port for feature
vector updates can either be used for writing feature vectors or for read requests.
The result of a read request appears on the output q0 in the next clock cycle. To
accumulate the feature vectors with as few memory accesses as possible, the feature
vector cache VC is updated with the feature vector of label LX while the current
connected component is scanned. A new label operation requires VC to be filled
with the initial feature vector IFV, a label copy operation on LD requires the feature
vector on the VC to be combined with IFV and a label copy operation applied on
LA, LB or LC requires VC and the feature vector at the q0 to be to combined. The
feature vector on VC is written to its data table entry when a background pixel is
reached at the end of a run when the condition end_of_run is true.

Performing a merger operation combines the feature vectors of Lmin, Lmax and IFV.
This is scheduled over three clock cycles carried out when processing the current, the
previous and following pixel. In general, for every object pixel, the IFV is combined
with the feature vector cache VC. Additionally, the following operations are required:
In the first cycle, LC is applied to addr0 requesting LC ’s feature vector. The feature
vector of LAD was either already read in the previous cycle as LB if the previous
pixel was background or is already on the VC if the previous pixel was an object
pixel. In state merger, the feature vector at q0 is combined with the VC and the
data table entry associated with the previous Lmax is invalidated. Depending on
the following pixel, the combined feature vector on VC is either written to the data
table or further accumulated.

The new value assigned to the feature vector cache V C in each cycle is either IFV

(new label pattern), IFV ◦ V C (label copy pattern), V C ◦ q0 or V C ◦ IFV ◦ q0
(merger pattern), and by using the reset signal VC is cleared to ∅ (completed object).
The input of the data table is either an empty feature vector to clear a DT entry
∅, V C or V C ◦ q0. If the current pixel is an object pixel, IFV is always combined
with V C. A read request issued in the previous clock cycle is indicated by the
did_read condition, which triggers the combination of V C with the output q0 in the
current clock cycle. For the state no merger these two possibilities of combining V C

with the IFV and the feature vector at q0 are represented by additional conditions
below a horizontal dashed line extending the conditions above the dashed line. For
example: If the current pixel is an object pixel, a read request was issued in the

84

i
i

“dissertation” — 2017/11/5 — 13:24 — page 85 — #85 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

1 2
3 4 5 6 7 8 9 10

11

R3 R4 R5 R6 R7 R8 R9I4 I5 I6 I9W7W3

R1 I1 R2 I2 R3R4R5R6R7R8R9

W10W8R10

R10R11

W11Port 0

Port 1

Image

Operations on

[65] ©2015 IEEE

Figure 3.8: The image shows the read (R), write (W) and Read-before-invalidate(I)
operations for BRAM port 0 and 1 for the last image row. [65]

previous clock cycle and the current pixel is a merger pattern, the multiplexer vcmux

is set to V C ◦ q0 ◦ IFV .

In Figure 3.8, the scheduling from 3.7 is applied on an example image. In the lower
part of Figure 3.8 the read, write and invalidation operations are illustrated, which
are induced by the patterns of the image in the upper part of Figure 3.8. BRAM
port 0 is used to read and write feature vectors from DT to update the feature
vector associated with the label assigned to the current pixel. In Figure 3.8, the
index i of each read instruction Ri, write instruction Wi or invalidate instruction Ii

indicates the address it is applied on. To read a feature vector in the same clock
cycle, in which it is invalidated in DT , the invalidate instruction Ii is implemented
as read-before-invalidate, read operation is carried out on addrress i before the data
on address i is invalidated. The read-before-invalidate operation is required for an
immediate resolution of a stale label (see state immediate resolution in Figure 3.7).

The second BRAM port (port 1) is used to read out feature vectors of completed
connected components and invalidate operations. An invalidate operation on addr1
of the second port is carried out when wena1 is one, and during this cycle, the
read-out process is paused. There can be up to ⌈W

2 ⌉ different connected components
in a single image row. If all are detected completed in the same image row, ⌈W

2 ⌉
read and ⌈W

2 ⌉ invalidation operations have to be carried out. Each feature vector
and active tag is associated with exactly one connected component, and therefore
AT can be packed together into the same BRAM as DT .

Table 3.2 shows how augmented labels and the reuse FIFO R are used to assign the
correct labels and to extract the feature vectors for each connected component of
the image in Figure 3.9. In this example, the augmented labels are represented by
two digit numbers. The first digit represents the row number and the second digit
the index. The changes of table and FIFO entries requiring a write operation to a
memory are highlighted in grey. Before processing the image (position 8), all tables
are initially blank and the label reuse FIFO R contains the reused label 4 at the
head followed by 3, 2, 1.

85

i
i

“dissertation” — 2017/11/5 — 13:24 — page 86 — #86 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Tables FIFO R

8

1 2 3 4
M 00 00 00 00
VF f f f f
DT ∅ ∅ ∅ ∅
AT 0 0 0 0

↓
...
3
4
↓

9

1 2 3 4
M 31 32 33 14
VF t t t t
DT # # # #
AT 1 1 1 1

↓
...
...
5
↓

10

1 2 3 4
M 31 32 14 14
VF t t f t
DT # # ∅ #
AT 1 1 0 2

↓
3
...
5
↓

11

1 2 3 4
M 31 14 14 14
VF t f f t
DT # ∅ ∅ #
AT 1 0 0 2

↓
2
...
5
↓

12

1 2 3 4
M 14 14 14 14
VF f f f t
DT ∅ ∅ ∅ #
AT 0 0 0 2

↓
1
...
5
↓

13

1 2 3 4
M 14 14 14 14
VF f f f f
DT ∅ ∅ ∅ ∅
AT 0 0 0 2

↓
4
...
5
↓

[65] ©2015 IEEE

Table 3.2: Correct labelling of image in Figure 3.9 by using augmented labels. A
in the data table DT indicates that the corresponding entry contains
meaningful feature vector data, while ∅ indicates that the entry is empty.
[65]

86

i
i

“dissertation” — 2017/11/5 — 13:24 — page 87 — #87 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

4

3 2 1

10

8

11 12

13

9

[65] ©2015 IEEE

Figure 3.9: Assigning the labels out of order creates a corrupted merger table. [65]

For a new label operation, the connected components are labelled with augmented
labels, i.e. label 4 becomes 14, label 3 becomes 33, etc. At position 9 DT contains
a feature vector for each of the component segments labelled 31, 32, 33 and 14.

The object pixel at 10 has two object labels 14 and 33 in its neighbourhood, i.e. a
merger pattern. At this position Lmin = 14 and Lmax = 33, making M [3] to point
to augmented label 14 and recycling label 3 to R. The feature vector at DT [3] is
merged with the feature vector of DT [4] and stored to DT [4], while VF [3] is set to
false and DT [3] is invalidated.

The patterns at positions 11 and 12 lead to merger operations which update the
entries of labels 32, 31 and 14 in tables M , VF , DT and AT and return non-root
labels to FIFO R.

At the end of the following image row, at 13 , the connected component labelled 14
is detected as completed so its label is returned to R as well. ’[65]

3.1.4 Stale labels

’A label is referred to as stale if a single lookup in M does not yield the root label.
This has not been taken into account in previous hardware architectures [7, 58] and
requires further processing. A bridge pattern is a component segment in which an
object label appears twice in the current image row separated by background pixels.
The bridge pattern’s object pixels in the current row are referred to as its piers. The
pixels belonging to the bridge, which are above the current row, are referred to as
the bridge’s arc. In the following figures the arc is either a group of pixels (see 3.10)
or is shown as a dashed line (see 3.12) indicating a path of object pixels. Merging
a bridge pattern’s pier label with a smaller label requires a lookup in M for the
other pier label to be labelled correctly in the neighbourhood context. Thus the
height of the connected component’s tree structure becomes 1. At the beginning
of each image row the height of all tree structures is smaller or equal one due to
chain resolution. A merger pattern with a bridge pattern’s left pier in the current

87

i
i

“dissertation” — 2017/11/5 — 13:24 — page 88 — #88 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

image row which merged another component segment in the previous row results in
a tree height of 2 in the merger table M (Figure 3.10). A single lookup of a label
which has a distance of 2 to its root label in the rooted tree structure in M does
not yield the root label. If such a non-root label appears as the minimum label in
the neighbourhood of an object pixel, the wrong label is assigned to LX .

After the lookup to determeine the parent of a label, a root label on M can be
detected by using an additional lookup to check if the label points to itself. A valid
flag VF for each label allows stale labels to be detected without this additional
lookup: A new label operation sets the new label’s VF flag to true and a merger
operation sets the VF flag of Lmax to false. Reading out VF along with M indicates
whether the assigned label is a root label or not. If a stale label is at the output of
the row buffer, the label assigned to LX is not a root. Therefore, LX ’s feature vector
is stored to the data table DT until its root label appears in the neighbourhood
context and their feature vectors are combined.

If there are nested bridge patterns, several stale labels can be detected before their
root labels appear in the neighbourhood context. To keep a record of the stale
labels which have to be merged with their root labels a label stack LS is introduced.
The label LX is pushed to LS whenever its VF flag is false. Its feature vector is
temporarily stored on the data table entry of LX , which is unused for any non-root
label. When LShead, the label at the head of the label stack, is equal to the output
of the row buffer, it is popped off LS to combine the feature vector of LShead and its
root label. In the FSM in Figure 3.7, the states Stale label resolution 1 and Stale label
resolution 2 handle merger patterns of feature vectors of non-root labels. If LX is
detected to be stale and its resolution is detected simultaneously, the feature vectors
are handled as shown in state immediate resolution of Figure 3.7. The VF flag and
the data table DT each have one association per label, i.e. they can be mapped to
the same logical BRAM resource. The maximum number of stale labels which can
appear in an image row is up to ⌈W

10 ⌉. To minimise the required hardware resources
the stack LS can either be realised as BRAM or distributed RAM, dependent on
the image size.

The two patterns in Figure 3.10 generate tree structures of height 2 in M resulting
in stale labels. In both images, label 2 and 3 are merged in the image row previous
to the position of LX . After merging label 1 and 2 in the current image row (buttom
row in Figure 3.10), all the label of all pixels labelled 3 leaving the row buffer are
translated to label 2. This is done by the lookup in merger table M which is done
for every label. In this case this lookup assigns a non-root label to LX .

Tables 3.3 and 3.4 (on page 89 and page 91) reflect the steps for processing the image
in Figure 3.11 making use of the label stack LS. At first, the connected components
are considered which consist of the component segments initially labelled 01, 02 and
23. The merger pattern at 17 induces a merger operation updating M [3] to label
02 and sets the valid flag of label 23 to false, i.e. VF [3] = false indicates that label
23 is not a root label. The feature vectors of the component segments 02 and 23

88

i
i

“dissertation” — 2017/11/5 — 13:24 — page 89 — #89 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

Tables LS

14

1 2 3 4 5 6
M 00 00 00 00 00 00
VF f f f f f f
DT ∅ ∅ ∅ ∅ ∅ ∅
AT 0 0 0 0 0 0

↓↑

∅

15

M 01 02 23 44 45 66
VF t t t t t t
DT # # # # # #
AT 0 0 0 0 0 0

↓↑

∅

16

M 01 02 23 44 45 45
VF t t t t t f
DT # # # # # ∅
AT 0 0 0 0 0 0

↓↑

∅

17

M 01 02 02 44 45 45
VF t t f t t f
DT # # ∅ # # ∅
AT 0 0 0 0 0 0

↓↑

∅

18

M 01 01 02 44 45 45
VF t f f t t f
DT # ∅ ∅ # # ∅
AT 1 1 0 0 0 0

↓↑

∅

19

M 01 01 02 44 45 45
VF t f f t t f
DT # # ∅ # # ∅
AT 1 1 0 0 0 0

↓↑

2

20

M 01 01 02 44 44 45
VF t f f t f f
DT # # ∅ # ∅ ∅
AT 1 0 0 1 1 0

↓↑

2
[65] ©2015 IEEE

Table 3.3: Feature vector extraction for the connected components of Figure 3.11
which contains several stale labels. Augmented labels in M are represented
by a two digit number - the first digit is the row, the second the index.
The valid flags in VF are either (t)rue or (f)alse. [65]

89

i
i

“dissertation” — 2017/11/5 — 13:24 — page 90 — #90 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

1
3

2

LX 2LX

1 2

3

[65] ©2015 IEEE

Figure 3.10: Two basic examples of stale labels: At position X, the content of the
merger table M is: 3→ 2→ 1. A lookup in the entry of M associated
with label 3 returns label 2, which has been merged with label 1 earlier
in the current row. [65]

01 02

23

44 45

66

14

18 19 20 21 22 23

16 1715

[65] ©2015 IEEE

Figure 3.11: Image containing nested connected components with stale labels. [65]

are combined and stored to DT [2], and the data table entry of label 3 is cleared,
DT [3] := ∅. Therefore, the tree height of the component segment labelled 02 is one
before reaching position 18 . The merger operation induced by the merger pattern
at position 18 updates M [2] to label 01 and sets VF [2] := false. The tree structure
of the connected component labelled 01 is therefore of height two which makes label
23 stale. At position 19 LB is 02 as a result of a single lookup of label 23. Since
VF [2], is set to false at 18 , a non-root label is detected and assigned to LX (position
19). From this it follows that the feature vector of the current pixel is stored to
DT [2] and label 2 is added to the label stack LS. At position 23 , the label stored
on the register attached to the output of the row buffer RBreg (label at position
23) is equal to the label at the head of the label stack LS. In this case the feature
vector of the non-root label 02 temporarily stored at DT [2] is combined with the
feature vector of its root label 01 and stored to DT [1]. Simultaneously, DT [2] is
cleared and label 2 is popped off LS.

The steps of processing the inner connected component consisting of the component
segments 44, 45 and 66 demonstrate that LS requires a stack data structure for

90

i
i

“dissertation” — 2017/11/5 — 13:24 — page 91 — #91 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

Tables LS

21

1 2 3 4 5 6
M 01 01 02 44 44 45
VF t f f t f f
DT # # ∅ # # ∅
AT 1 0 0 1 1 0

↓↑

5
2

22

M 01 01 02 44 44 45
VF t f f t f f
DT # # ∅ # ∅ ∅
AT 1 0 0 1 1 0

↓↑

5
2

23

M 01 01 02 44 44 45
VF t f f t f f
DT # ∅ ∅ # ∅ ∅
AT 1 1 0 1 0 0

↓↑

2
[65] ©2015 IEEE

Table 3.4: Feature vector extraction for the connected components of Figure 3.11
which contains several stale labels. Augmented labels in M are represented
by a two digit number - the first digit is the row, the second the index.
The valid flags in VF are either (t)rue or (f)alse. [65]

processing nested stale label patterns. The merger operation induced by the merger
pattern at 16 updates M [6] to label 45 and sets VF [6] := false. The feature vectors
of the component segments 45 and 66 are combined and stored to DT [5], and the
data table entry of label 66 is cleared. As before, label 66 becomes stale because
of the merger operation at 20 , which increases the height of the tree structure of
the connected component labelled 44 from one to two and sets VF [5] := false. The
feature vectors of the component segments 44 and 45 are combined and stored at
DT [4], the data table entry of label 45 is cleared, DT [5] := ∅. At 21 the non-root
label 45 (which is looked up from label 66) is assigned to Lmin. Therefore, the
feature vector of the pixel at 21 is stored at DT[5] and label 5 is added to the label
stack LS. At position 22 the label stored on the register attached to the output of
the row buffer RBreg is equal to the label at the head of the label stack LS, the
feature vector of the non-root label 45 temporarily stored at DT [5] is combined with
the feature vector of its root label 44 and stored DT [4]. Simultaneously, DT [5] is
cleared and label 5 is popped of LS.’[65]

91

i
i

“dissertation” — 2017/11/5 — 13:24 — page 92 — #92 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

2 112 2

[65] ©2015 IEEE

Figure 3.12: Impossible scenario: Label between bridge piers appears to the right
or left of the bridge. [65]

3.1.5 Validation of the architecture

’The correct functionality of the architecture relies on the assumption that a single
lookup in M is always sufficient to assign a label to LX which associates the pixel
at position X with its connected component. To achieve this, the tree structures in
the merger table M are compressed to a height of one by different means: Merger
operations can either affect the tree structure in M of labels to the left or to the
right of position X. Label chains create tree structures with height > 1 for labels
left of the current position X which are relevant for the processing of the next image
row. Stale labels create a tree height of 2 for labels to the right of X which are
relevant for processing the current image row. With the stacks S and LS both cases,
chains and stale labels, are handled by memorising temporary differences in M and
re-establishing the single lookup principle by updating the merger table M after the
occurrence of a chain or a stale label.

To ensure that each pixel is associated with its connected component, the different
combinations of stale label and bridges are listed in Table 3.5 which are analysed
in the following. Chains and stale labels are formed by merger patterns or
combinations of merger patterns and bridge patterns. In an image neighbourhood,
not all combinations of stale labels and bridge patterns are possible. This is discussed
in the following. The cases that are not possible are marked with an 7 in Table 3.5.
There is no need to further examine whether labelling is correct for these impossible
combinations. The combinations from Table 3.5 which are not impossible are marked
by a ✓ and were examined to assign the correct label to the current label LX with
examples performed with a pencil-and-paper method. A formal proof is beyond the
scope of this dissertation and was, therefore, carried out in [67]. In the image in
Figure 3.12, the current image row contains two piers of a bridge pattern labelled 1
and a connected component between the two bridge piers labelled 2. In the already
scanned image, part no pixels can be labelled 2 outside the bridge. Therefore, a
pixel’s label between two bridge piers of the same bridge is always larger than the
bridge’s label. Merger patterns 10, 14, 21 and 23 of Table 3.5 are therefore not
possible.

92

i
i

“dissertation” — 2017/11/5 — 13:24 — page 93 — #93 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

Combinations of Merger Patterns
Merger
Pattern

Stale Bridge LAorD

> LC

Pattern

Possible

Correct

labelling# AD C AD C
0 0 0 0 0 0 ✓ ✓

1 0 0 0 0 1 ✓ ✓

2 0 0 0 1 0 ✓ ✓

3 0 0 0 1 1 ✓ ✓

4 0 0 1 0 0 ✓ ✓

5 0 0 1 0 1 ✓ ✓

6 0 0 1 1 0 ✓ ✓

7 0 0 1 1 1 ✓ ✓

8 0 1 0 0 0 7

9 0 1 0 0 1 7

10 0 1 0 1 0 7

11 0 1 0 1 1 ✓ ✓

12 0 1 1 0 0 7

13 0 1 1 0 1 7

14 0 1 1 1 0 7

15 0 1 1 1 1 ✓ ✓

16-19 1 0 0 - - 7

20 1 0 1 0 0 ✓ ✓

21 1 0 1 0 1 7

22 1 0 1 1 0 ✓ ✓

23 1 0 1 1 1 7

24-31 1 1 - - - 7

[65] ©2015 IEEE

Table 3.5: Validation of possible combinations of merger patterns. Don’t cares in
the table are marked by ’-’. [65]

According to the definition in Section 3.1.4, a stale label is always created by a
bridge. This excludes merger patterns 8, 9, 12, 13 and 16-19 from the possible
patterns, as marked in Table 3.5. For label LC to be stale, one bridge is necessary,
while for the label LAorD to be stale, two bridges are required. The four different
combinations to form a pattern making both LAorD and LC stale are shown in
Figure 3.13, with bridges indicated by dashed lines. All four attempts to make both
LAorD and LC stale fail because of intersecting bridges making them a connected
component; therefore, the merger patterns 24-31 of Table 3.5 can never exist. Table
3.5 shows that all cases of merger patterns for stale labels and bridges which are
possible are labelled correctly.

93

i
i

“dissertation” — 2017/11/5 — 13:24 — page 94 — #94 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

L
LX

L

L

L

LX

LX

LX

[65] ©2015 IEEE

Figure 3.13: All failing attempts to make the two object labels of a merger pattern
stale. [65]

3.1.6 Validation of the implementation

To ensure the functional correctness of the implementation of the SLCCA architecture
all possible pixel combinations for a small size test image were streamed into the
architecture and the outputs verified against a reference implementation [9], as shown
in Figure 3.14. The size of the test image chosen for this full verification is a trade-off
between the complexity of the pixel patterns in the image and processing time which
grows exponentially with the number of pixels. For the chosen image size of 9× 5
pixels, all of the possible 245 different image patterns were successfully verified
against the reference implementation applying the classical two-pass connected
components labelling algorithm. To reduce the duration of the verification process,
an on-chip verification environment realised in hardware on an FPGA was used. It
contains 75 instances of the SLCCA architecture and the reference implementation
working in parallel, which enables an accelerated verification process, from more
than one year of verification time on a single instance down to seven days for all
instances processing in parallel. The exhaustive verification of all binary 9 × 5
images covers the cases of Table 3.5, though parts of the implementation are still

94

i
i

“dissertation” — 2017/11/5 — 13:24 — page 95 — #95 i
i

i
i

i
i

3.1 Design of the Hardware Architecture

245

Test images

Image
stream

generation

...

...

=

Proposed
CCA

Architecture

Classical
CCL

Algorithm

=

Proposed
CCA

Architecture

Classical
CCL

Algorithm

=

Proposed
CCA

architecture

Architecture
using classical

CCL
algorithm

On-chip verification environment

Feature
vector

Feature
vector

Image
stream

75 instances of both architectures

[65] ©2015 IEEE

Figure 3.14: Block diagram of the on-chip verification environment which success-
fully verified all combinations of a 9 × 5 image against a reference
implementation. [65]

not exercised by images of this size. This required further validation to make sure
the implementation realises all scenarios of the previously described architecture
correctly, e.g. for nested stale labels such as in Figure 3.11. These parts of the
implementation were validated by checking the code coverage of the VHDL code in
behavioural simulation to ensure correct functionality [120]. ’[65]

95

i
i

“dissertation” — 2017/11/5 — 13:24 — page 96 — #96 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Data structure Rosenfeld et al. [102] Ma and Bailey [83] SLCCA
NL ⌈W ×H

4 ⌉ ⌈W
2 ⌉ ⌈W +5

2 ⌉
NM − ⌊W −1

2 ⌋ ⌊W −1
2 ⌋

WIDX ⌈log 2(NL)⌉ ⌈log2(NL)⌉ ⌈log2(NL)⌉
WAL − − WIDX + ⌈log2(H)⌉

L NL ×WIDX×W ×H − −
RB − NL ×WIDX NL ×WIDX

S − 2×WIDX ×NM 2×WIDX ×NM

M NL ×WIDX 2×NL ×WIDX NL ×WAL

R − − NL ×WIDX

DT − 2×NL ×WF V NL ×WF V

TT − NL ×WIDX −
LS − − NL × ⌈W

10 ⌉
VF − − NL

AT − − 2×NL

[65] ©2015 IEEE

Table 3.6: Comparison of the memory bits required for components analysis for the
classical CCL algorithm [102], the single-pass architecture from [83] and
the SLCCA architecture for different image sizes. [65]

3.2 Experimental Results and Discussion

‘ In this section, the results for the realisation of the SLCCA hardware architecture
is evaluated and benchmarked. The hardware architecture’s performance and
memory-efficiency is compared to other connected components analysis hardware
architectures for different image sizes from VGA with 640× 480 pixels per image to
ultra-high-definition (UHD) with image sizes up to 7680× 4320 pixels [55].‘[65]

3.2.1 Memory Requirements

’Table 3.6 compares the number of bits required for the memories integrated in the
different processing blocks of the CCA architectures for an image of the size W ×H

pixels for both the architectures in [83] and the SLCCA architecture, as well as the
Rosenfeld’s classical CCL algorithm [102]. Both architectures require the row buffer
RB and the stack S of the same size for connected components analysis.

The CCA architecture by Ma and Bailey [83] has been the most memory-efficient
architecture in the academic literature. For [83] the following on-chip memories
are required: Every second pixel can be a different connected component or be a
component segment merging another segment later in the image. Therefore, the

96

i
i

“dissertation” — 2017/11/5 — 13:24 — page 97 — #97 i
i

i
i

i
i

3.2 Experimental Results and Discussion

number of labels NL is only dependent on the image width. The architecture requires
two merger tables M , one to store the label pairs for each merger pattern of the
previous row and one to store each label pair of the merger pattern of the current
row. To store a relation between two labels, each entry of the merger table M is as
wide as a label (WIDX). The aggressive relabelling scheme requires a translation
table TT with NL entries of width WIDX . For the feature vector collection, two
data tables DT , one for the feature vectors of the previous row’s labels and one for
the feature vectors of the current row’s labels, are required. The width WF V of each
entry of the data table DT is dependent on the feature to be extracted.

The SLCCA architecture requires the following on-chip memory: The number of
labels NL depends on the image width plus a constant to compensate for the 5 clock
cycle latency of the label recycling process, and is therefore ⌈W +5

2 ⌉. The augmented
labelling (AL) requires the merger table of the SLCCA architecture to be as wide
as the width of an augmented label WAL. The label reuse FIFO R of the label
management unit needs to be able to store all labels, i.e. requires a depth of NL

labels. For the feature vector collection a single data table DT with NL entries of
width WF V is sufficient.

Table 3.7 compares the amount of on-chip memory required between the classical CCL
algorithm [102], the single-pass architecture by Ma [83] and the SLCCA architecture
for extraction of the bounding box and the area features of images of different sizes.
Table 3.7 shows the amount of on-chip memory for common image size from VGA
to UHD8k based on the equations from Table 3.6. The ratio of on-chip memory
required for the label assigning process and the feature vector collection process is
also compared. The data strucutres required for the label assigning process are the
row buffer RB, the stack S, the merger table M , the valid flags VF , the FIFO for
reused labels R and the translation table TT . The data strucutres required for the
feature vector collection process are the data table DT , the label stack LS and the
active tags AT . The values in Table 3.7 for the SLCCA architecture and the values
of the architecture by Ma and Bailey [83] are depicted in the diagram in Figure
3.15. For all image sizes from VGA to UHD8k, the SLCCA architectures requires
fewer on-chip memory resources than the architectures of Ma and Bailey [83]. By
halving the memory resources for feature vector collection, the resources required
for the entire SLCCA architecture can be reduced by up to 31% compared to Ma
and Bailey [83] for extracting the bounding box and the area feature vector for
each connected component. The width of the bounding box feature vector, the area
feature vector and the first order moment feature vector is dependent on the image
dimension. For the simultaneous extraction of multiple features, the width of the
data table increases accordingly with the image dimension. The feature vector for
the three features, bounding box, area and first order image moment adds up to 175
bits per connected component. When realising a CCA architecture extracting those
three features simultaneously, up to 42% of memory resources are saved compared
to [83]. For a wider feature vector, even more memory resources are saved.

97

i
i

“dissertation” — 2017/11/5 — 13:24 — page 98 — #98 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Image size
VGA DVD HD720 HD1080 UHD3k UHD4k UHD8k

Data 640 720 1280 1920 3840 4096 7680
structure × × × × × × ×

480 576 720 1080 2160 2160 4320
Rosenfeld’s classical two-pass algorithm [102]

L 5M 7M 16M 39M 174M 194M 763M
M 1.3M 1.7M 4M 9M 43M 48M 190M
DT 4.3M 5.9M 13.8M 32.6M 143.0M 157.0M 622.0M∑ 10.8M 14.7M 34.5M 81.9M 0.36G 0.40G 1.57G

Ma and Bailey’s optimised single-pass architecture [83]
M 5760 6480 12800 19200 42240 45056 92160
TT 2880 3240 6400 9600 21120 22528 46080
RB 5760 6480 12800 19200 42240 49152 92160
S 2880 3240 6400 9600 21120 24576 46080

DT 35840 41040 76800 120960 264960 290816 576000∑ 53120 60480 115200 178560 391680 425984 852480
SLCCA

M 5760 6840 12800 20160 44160 49152 96000
R 2907 3267 6430 9630 21153 24612 46116

LS 576 648 1280 1920 4224 4920 9216
RB 5760 6480 12800 19200 42240 49152 92160
S 2880 3240 6400 9600 21120 24576 46080

DT 18243 20883 39043 61443 134403 147459 291843
E 323 363 643 963 1923 2051 3843
V 323 363 643 963 1923 2051 3843∑ 36449 41721 79396 122916 269223 295778 585258

[65] ©2015 IEEE

Table 3.7: Comparison of on-chip BRAM bits required for components analysis
for the classical CCL algorithm, the single-pass architecture from [83]
and the SLCCA architecture for different image sizes. The size of data
table DT corresponds to extracting bounding box and area features
simultaneously. [65]

98

i
i

“dissertation” — 2017/11/5 — 13:24 — page 99 — #99 i
i

i
i

i
i

3.2 Experimental Results and Discussion

VG
A

D
VD

H
D
72
0

H
D
10
80

UH
D
3k

UH
D
4k

UH
D
8k

Image resolution

100k

200k

300k

400k

500k

600k

700k

800k

900k

#
B
R
A
M

bi
ts

Label assigning

Feature vector collection

SLCCA

Ma and Bailey [83]

[65] ©2015 IEEE

Figure 3.15: The bar diagram shows the number of on-chip BRAM bits for the label
assigning in red and the feature vector collection in blue. The hatched
bars on the right show the memory required for the architecture in [83]
and the left bars show the memory required for the SLCCA architecture
for different image sizes. [65]

As discussed in the introduction, the access time to the memory structures, especially
the latency, was identified to be the most important criterion for processing a pixel
stream with a high throughput and low latency. Therefore, offloading the memory
structures to off-chip memory to save chip area counteracts the key idea of the
architecture. If implementing the SLCCA architecture on an ASIC, there are a
number of possibilities to realise the memory structures, either based on SRAM or
DRAM cells [31]. While DRAM cells require fewer transistors per bit than SRAM
cells, in general, any data stored in DRAM must be refreshed periodically. In CCA
the data structures are accumulated from one row to the next and are therefore
only up-to-date for a maximum of two image rows before they are either changed
or read out. For typical image sizes this process is less than a millisecond which is
significantly lower than the refresh rate of a typical DRAM cell. This allows the
smaller DRAM cells to be used without refresh. This applies to all internal memory
structures (stored in BRAMs in the presented implementation), except the reuse
FIFO R, which needs to store the unused labels for the duration of up to one frame.
’[65]

99

i
i

“dissertation” — 2017/11/5 — 13:24 — page 100 — #100 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

[65] ©2015 IEEE

Figure 3.16: This diagram shows the number of clock cycles for processing square
images of different sizes with the worst case pattern from Figure 3.18. [65]

3.2.2 Benchmark

’The performance of the SLCCA architecture is measured in a manner similar to the
benchmark in [51]. In [51] test images from Standard Image Database (SIPI) [124]
and random images with different densities of object pixels are used. All images
for this performance evaluation are of size 512× 512 pixels. Greyscale images are
binarised using the threshold value determined by Otsu’s method [97]. All results in
this section are acquired by behavioural simulation of the implementation of the
SLCCA architecture implemented in VHDL.

Every image pixel can be processed in one processing cycle; additional processing
cycles at the end of the image row result from chain processing. From this, it follows
that the worst case processing time occurs when the number of entries on stack S is
maximum. To analyse the worst case processing time for different image sizes from
64 pixels to 4 megapixels, images with the worst case pattern of Figure 3.18(e) are
evaluated. Figure 3.16 shows that the number of processing cycles scale linearly for
the examined image sizes.

Figure 3.17 shows the execution time for processing a random image as a function
of the density of object pixels in the image for 512× 512 images. Random images
were used to evaluate the execution time against the number of object pixels in an

100

i
i

“dissertation” — 2017/11/5 — 13:24 — page 101 — #101 i
i

i
i

i
i

3.2 Experimental Results and Discussion

[65] ©2015 IEEE

Figure 3.17: This diagram shows the execution time of the implementation of the
SLCCA architecture operated at 100 MHz for 512× 512 images filled
with random noise for different densities of object pixels. [65]

image. For 0% and 100% density of object pixels, the image contains either none or
one connected component, with the highest number of connected components being
around 50%. The diagram in Figure 3.17 shows that the execution time is maximum
between 40% and 50% object pixel density, which confirms the results from Section
2.5. This corresponds to an overhead due to stack processing at the end of the row
of less than 5%, which is significantly lower than in the worst case. To evaluate the
architecture’s performance for processing natural images, a representative image
series from the SIPI database containing 215 typical images are used divided into the
categories misc, textures, aerials and sequences. In Figure 3.18 the results for the
mean processing cycles per image for each image series and the maximum number
of stack entries for processing each image series is shown. ’[65]

The diagram in Figure 3.19 shows the maximum processing latency of the presented
SLCCA architecture for different image sizes. The maximum processing latency
describes the maximum amount of clock cycles from receiving the last pixel associated
with a connected component c in forward raster scan order until the feature vector
of connected component c is output by the SLCCA architecture. The maximum
processing latency of the SLCCA architecture is equal to the number of clock cycles
needed to process the two image rows subsequent to the last pixel associated with
connected component c. Two image rows are required since a connected component

101

i
i

“dissertation” — 2017/11/5 — 13:24 — page 102 — #102 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

(a) Misc (b) Textures (c) Aerials

cmean = 264946 cmean = 2673911 cmean = 265684
smax = 28 smax = 36 smax = 18

(d) Sequences (e) Worst case (f) Random noise

cmean = 264267 cmean = 6
5 ×W ×H cmean = 273744

smax = 4 smax = W
5 smax = 92

[65] ©2015 IEEE

Figure 3.18: This figure gives the mean number of processing cycles cmean and the
maximum stack size smax for (a) - (d) which are test images from
USC-SIPI Image Database [124]. (e) Worst case image [7] with the
maximum number of merger patterns. (f) Random noise image with
50% of object pixels as in Figure 3.17. [65]

is detected to be completed (Equation 2.28) if its feature vector in DT was last
updated two rows before the currently processed row. The processing of two image
rows requires independent of the contained pixel data 2×W clock cycles. Another
cycle is required to process an entry in stack S for each non-propagating merger
detected in these two image rows.

The chainmax pattern is the pattern which creates the maximum number of entries in
stack S. It has the following properties: The chainmax pattern spans the full width
W of the input image and consists of the maximum of ⌊W

2 ⌋ non-propagating merger
patterns in one image row. If the image height exceeds the image width (W > H),
chainmax pattern contains multiple chain patterns in the same image row. The worst
case pattern from Figure 3.18(e) contains a maximum of 2× ⌈W

5 ⌉ non-propagating
merger patterns in two subsequent image rows. Therefore, the latency for processing
the pattern from Figure 3.18(e) is lower than processing a chainmax pattern. The
latency values in the diagram in Figure 3.19 are, therefore, the processing latency

102

i
i

“dissertation” — 2017/11/5 — 13:24 — page 103 — #103 i
i

i
i

i
i

3.2 Experimental Results and Discussion

Figure 3.19: This diagram shows the guaranteed upper bound for the maximum
processing latency in clock cycles and in µs for the implementation of
the SLCCA architecture when operated at 100 MHz.

values in clock cycles of a chainmax pattern, as this is the pattern with the maximum
number of non-propagating merger patterns in two subsequent image rows.

The processing latency increases linearly with the image width as shown in the
diagram in Figure 3.19. When the SLCCA architecture is operated at 100 MHz,
the processing latency is below 160µs even for UHD8k resolution. When operating
the SLCCA architecture at a higher frequency (e.g. those shown in Figure 3.23),
the processing latency decreases even further. Since the values from Figure 3.19
are a guaranteed upper bound for the processing latency, the SLCCA hardware
architecture presented in this chapter is also suitable for the application in real-time
image processing systems.

103

i
i

“dissertation” — 2017/11/5 — 13:24 — page 104 — #104 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

[65] ©2015 IEEE

Figure 3.20: This diagram shows the number of lookup tables (LUTs) required by
the FPGA implementation of the SLCCA architecture for different
image sizes and different FPGA families. [65]

3.2.3 Hardware Resources

’ The FPGA hardware architecture of the SLCCA connected components analy-
sis algorithm was described in VHDL and implemented for the Xilinx Virtex 6
VLX240T-2 (speedgrade -2, 40 nm technology), Xilinx Spartan 6 SLX150T-2 (speed-
grade -2, 45 nm technology) and Xilinx Kintex 7 K325T-2L (speedgrade -2L, 28
nm technology) to explore the performance on different FPGA devices. To acquire
comparable mapping and timing results, for the implementation on all FPGA devices
the PlanAhead 14 default implementation strategy was used and nothing apart from
the SLCCA architecture was implemented on the FPGA devices.

In the diagrams in Figure 3.20-3.22, the FPGA resources required for the imple-
mentation of the SLCCA architecture are shown for a number of typical image
sizes from VGA to UHD8k for Kintex 7, Virtex 6 and Spartan 6 FPGAs. The
diagram in Figure 3.20 shows the number of lookup tables (LUTs) which realise
logic functions with up to 6 inputs [128, 134]. The number of slice registers is
shown in the diagram in Figure 3.21. Both the number of LUTs and slice registers
increase quasi-logarithmically with the image width. The number of slice registers
is nearly identical for the three examined FPGA devices, and the number of LUTs
varies between the device families depending on the image size. The Kintex 7 and
Virtex 6 devices provide 18kBit and 36kBit BRAM resources, and the Spartan 6

104

i
i

“dissertation” — 2017/11/5 — 13:24 — page 105 — #105 i
i

i
i

i
i

3.2 Experimental Results and Discussion

[65] ©2015 IEEE

Figure 3.21: This diagram shows the number of slice registers required by the FPGA
implementation of the SLCCA architecture for different image sizes
and different FPGA families. [65]

device BRAMs are 9kBit and 18kBit. Since the unused memory resources of a
partially used BRAM are not available to other components on the FPGA, they
are considered to be used for the comparison. This results in a different number of
required BRAM bits for Spartan 6 and Virtex 6 or Kintex 7. The diagram in Figure
3.22 shows the number of used BRAMs for different image sizes. The number of
required on-chip memories scales linearly with the image width. The throughput
of the connected components analysis architecture is mainly proportional to the
maximum operating frequency fmax which is shown in the diagram in Figure 3.23
for different image sizes. For the implementation of the SLCCA architecture on
Kintex 7 and Virtex 6, the maximum operation frequency fmax is almost twice that
implemented on the Spartan 6 which has a direct impact on the throughput.

The throughput can be classified into two parts: a static part with one pixel per clock
cycle which is completely independent of the image content and a data-dependent
part for resolving the label pair of a merger pattern (stored on S) depending on the
image content. The data-dependent part lasts between 0 clock cycles, if the stack S

has no entries, and ⌈W
5 ⌉ clock cycles per image row for the worst case pattern of

Figure 3.18(e). Thus, considering the worst case pattern, an image stream of up
to 166 megapixels per second can be processed in real-time (for VGA resolution).
’[65]

105

i
i

“dissertation” — 2017/11/5 — 13:24 — page 106 — #106 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

[65] ©2015 IEEE

Figure 3.22: This diagram shows the number of on-chip BRAM bits required by the
FPGA implementation of the SLCCA architecture for different image
sizes and different FPGA families. [65]

106

i
i

“dissertation” — 2017/11/5 — 13:24 — page 107 — #107 i
i

i
i

i
i

3.2 Experimental Results and Discussion

[65] ©2015 IEEE

Figure 3.23: This diagram shows the maximum operation frequency after the
place&route (PAR) of the SLCCA hardware architecture for differ-
ent image sizes and different FPGA families. [65]

107

i
i

“dissertation” — 2017/11/5 — 13:24 — page 108 — #108 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Algorithm # Passes Scan method Connect- Worst case
ivity identified

Ma and Bailey [83] Single-pass Pixel-based 8 True
Zhao et al. [138] Single-pass Run-based 4 False

Bailey et al. [7]/ [58] Single-pass Pixel-based 8 True
Ito et al. [57] Single-pass Run-based 4 True

Appiah et al. [5] Two-pass Run-based 8 True
SLCCA Single-pass Pixel-based 8 True

[65] ©2015 IEEE

Table 3.8: Comparison of the algorithm properties of CCA hardware architectures.
[65]

Architecture Hardware Image size Extracted LUTs Registers BRAM
device [Pixel] FV [bit]

[83] Virtex 2 640× 480 A, C 1757 600 72k
[138] Virtex 2 256× 256 A, FOM 4587 3154 234k
[7, 58] Spartan II 670× 480 A, C 810 286 16k
[57] Stratix 2k × 2k N/A 1.5k-10k LE 53k-409k
[5] Virtex 4 640× 480 N/A 649 641 1142k

SLCCA Kintex 7 256× 256 BB 2158 988 108k
UHD8k BB 2819 1464 630k

[65] ©2015 IEEE

Table 3.9: Comparison of several CCA hardware architectures with respect to hard-
ware resources. Extracted feature vectors: (A) Area, (C) Component
count, (FOM) First-order moment and (BB) Bounding box. [65]

3.2.4 Comparison to Other Hardware Architectures

’ In Tables 3.8, 3.9 and 3.10, the algorithms and the implementations of several
published CCA hardware architectures are compared.

These publications suggest a diverse variety of methods at the algorithmic level as
well as at the architectural level and the hardware devices used for implementation.
The differences between these architectures at the algorithmic level include the
connectivity (either 4-connectivity of 8-connectivity), the scan method (either pixel
by pixel processing or run processing), and the number of scans (either single-pass
or two-pass). At the architectural level they differ in image size, extracted feature
vector and the hardware device used.

All of these factors directly affect the maximum frequency the circuit of the CCA
architecture can be operated at, which plays a major role in the achievable perfor-

108

i
i

“dissertation” — 2017/11/5 — 13:24 — page 109 — #109 i
i

i
i

i
i

3.2 Experimental Results and Discussion

Architecture Hardware Image size fmax Worst case throughput
device [Pixel] [MHz] [MP ixel

s]
Ma and Bailey [83] Virtex 2 640× 480 40.64 32.5

Zhao et al. [138] Virtex 2 256× 256 95.7 N/A
Bailey et al. [7, 58] Spartan II 670× 480 N/A N/A

Ito et al. [57] Stratix 2k × 2k 61-72 61-72
Appiah et al. [5] Virtex 4 640× 480 49.73 ≤24.86

SLCCA Kintex 7 256× 256 156.4 124.2
UHD8k 135.04 99.1

[65] ©2015 IEEE

Table 3.10: Comparison of several CCA hardware architectures with respect to pro-
cessing throughput. Extracted feature vectors: (A) Area, (C) Component
count, (FOM) First-order moment and (BB) Bounding box. [65]

mance. As a basis for comparing the maximum throughput, the throughput of a
worst case image stream is chosen because it provides a true upper bound for the
processing time and, therefore, the applicability of the architecture for real-time
processing. Depending on connectivity, scan method and the number of scans, the
worst case image differs; some publications lack the identification of a worst case
scenario. These aspects make a direct comparison difficult. For this reason, the
results of each architecture from academic literature summarised in Tables 3.9 and
3.10 are compared individually to the SLCCA architecture presented in Section 3.1.

Comparison of the SLCCA architecture with the architecture by Ma and Bailey [83]

The architecture of [83] is the most resource efficient architecture reported in the
literature to date. The key weakness of [83] is the requirement for two tables for
merger management and to translate labels due to aggressive relabelling. This also
requires use of two data tables, one for the old labels and one for the new labels.
As memory resources scale linearly with image width, they are more critical for
scalability. In Section 3.2.1, it is shown that the BRAM resources required for this
work are fewer for all image sizes compared to [83]. In the presented implementation
of the SLCCA architecture, the maximum throughput is more than three times
higher, some of which will be a result of using a newer FPGA. The main advantage
of the proposed algorithm is label reuse, reducing the memory requirements for
storing feature vectors which reduces the amount of memory resource for the SLCCA
by 42% (depending on the image size and the extracted feature vectors).

109

i
i

“dissertation” — 2017/11/5 — 13:24 — page 110 — #110 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

Comparison of the SLCCA architecture with the architecture by Zhao et al. [138]

In [138], a CCA architecture is presented processing the input image after performing
run-length encoding. The architecture of [138] considers 4-connectivity which will give
a different result to 8-connectivity used in the SLCCA architecture. Four-connectivity
requires fewer comparisons per pixel providing a shorter critical path in the resulting
hardware circuit. For an image size of 256× 256, the authors state a throughput
of around 90 Megapixel/s by eliminating the additional processing at the end of
the image row. For 8-connectivity, CCA such a method cannot be found in the
literature. The SLCCA architecture requires significantly fewer LUTs and registers
for an architecture processing the same image size, as shown in Table 3.9. Another
major advantage of the SLCCA algorithm compared to the algorithm used in [138]
is the identification and analysis of the worst case image pattern which makes it
applicable for real-time processing.

Comparison of the SLCCA architecture with the architecture by Bailey and Johnston
[7, 58]

The CCA architecture in [7,58] is an earlier version of [83] which is less hardware
and memory efficient than [83]. It provides memory for 256 labels, i.e. does not
cover a worst case scenario. Therefore, a meaningful comparison to this work is not
possible.

Comparison of the SLCCA architecture with the architecture by Ito et al. [57]

The authors state that their architecture requires between 1.5k and 10k logic elements
to process a four megapixel image, where one logic element is equal to a 4-input
LUT and one flip-flop. The SLCCA architecture requires approximately 400 slice
registers and 700 6-input LUTs to process a comparable image size, as shown in
Figures 3.20 and 3.21. In [57], all of the information is obtained by local operations
propagating tags to the next image row. In the SLCCA algorithm, the connection
between distant component segments is identified by a global equivalence table
(merger table M) which allows feature vectors to be extracted for arbitrarily shaped
components. In [57], a measure for the level of concavity in image components
is introduced. Therefore, it is possible that different labels are assigned to pixels
of the same connected component if the level of concavity is exceeded which is a
limitation of general applicability. The SLCCA architecture is able to extract the
feature vectors of connected components of arbitrary shapes, i.e. there is no limit of
the level of concavity.

110

i
i

“dissertation” — 2017/11/5 — 13:24 — page 111 — #111 i
i

i
i

i
i

3.2 Experimental Results and Discussion

Comparison of the SLCCA architecture with the architecture by Appiah et al. [5]

The architecture in [5], based on a two-pass algorithm, requires the complete image
to be stored before the labelling process starts, i.e. large images cannot be processed
completely on an FPGA due to a lack of sufficient on-chip memory. The two-pass
algorithm of [5] requires a minimum of 2 clock cycles to process a single pixel. For
stream processing, an additional buffer is required to store the pixels received while
the second pass of the previous image is carried out. The SLCCA architecture uses
a single-pass algorithm which does not require the complete image to be stored and,
therefore, requires significantly less memory resources. ’[65]

111

i
i

“dissertation” — 2017/11/5 — 13:24 — page 112 — #112 i
i

i
i

i
i

3 Hardware Architecture of SLCCA

3.3 Summary and Contributions of the SLCCA Hardware
Architecture to the State of the Art

’The SLCCA hardware architecture proposed in this chapter is an improvement to
the state of the art on several levels, as pointed out in the following.

• High-throughput processing of (worst case) binary image streams: For pro-
cessing a image stream consisting of worst case patterns, the proposed archi-
tecture achieves a throughput of up to 166 Megapixel/s. To the best of our
knowledge this is the highest throughput of a connected component analysis
architecture for 8-connectivity processing one pixel per clock cycle which has
been achieved on an FPGA.

• Using a novel control structure to detect the last pixel of an image object in
the video stream at the earliest possible point in time: This allows achieve a
processing latency below 160µs even for image streams of 32 Megapixel images
and contributes to reducing the number of required memory resources as these
can be reused earlier.

• Memory reduction by the recycling of labels: At the architecture level, a novel
label recycling scheme is introduced. In combination with the proposed method
for detecting the last pixel of an object (SLCCA algorithm), the memory for
storing feature vectors is halved compared to [83] by eliminating redundant
data structures.

• The realisation of the novel label recycling scheme from the SLCCA algorithm:
The label translation scheme of [83] using a dedicated translation table is
simplified by reducing the number of lookups from two to one per label, as
only a merger table is required.

• A reduction of memory resources for the entire architecture: As the SLCCA
algorithm which lays the foundation for the SLCCA architecture is a single
pass algorithm, the total memory required can be reduced by a factor of more
than 200 compared to the classical connected components labelling algorithm
which is a two-pass algorithm [102]. Depending on the extracted feature vector
and image size, 42% or more of memory resources can be saved compared to
an optimised state-of-the-art architecture [83].’[65]

112

i
i

“dissertation” — 2017/11/5 — 13:24 — page 113 — #113 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

In this chapter, the parallel SLCCA algorithm is presented, which is a parallelisation
of the SLCCA algorithm introduced in Chapter 2. The parallel SLCCA algorithm
is denoted in the following as PCCA, while the SLCCA algorithm is denoted as
SLCCA.

PCCA processes several pixels of the input image simultaneously. The major
innovation of the PCCA algorithm compared to the SLCCA algorithm is parallel
on-the-fly-processing of binary images in a single pass achieved by splitting up global
data dependencies and processing them locally. A high throughput is achieved
by dividing the input image into several vertical image slices which connected
components only have local data dependencies. The feature vectors extracted
from these vertical image slices are combined after parallel processing as the global
dependencies are gathered while the image is processed. Each feature vector extracted
by PCCA is, therefore, available only a few image rows after the last pixel of
the associated connected component is received, instead of waiting until the end
of the image. Even the most advanced parallel state-of-the-art CCA or CCL
algorithms [12] for general-purpose processors combine the results of processed slices
after the entire image is processed. The PCCA algorithm combines feature vectors
of connected components spanning several image slices while the image is processed.
This enables a low processing latency and facilitates the design of a memory-efficient
and resource-efficient hardware architecture (introduced in Chapter 5) by label
recycling.

The images in Figure 4.1 demonstrate the basic processing steps of the PCCA
algorithm. Prior to processing a colour or greyscale image, such as the head MRI
image in Figure 4.1(a), a segmentation step is required. The result of this step is
shown in Figure 4.1(b), where a black pixel represents an object pixel and a white
pixel background. The PCCA algorithm separates the binary input image into
several vertical sub-images, each processed by an instance of the SLCCA algorithm
(Figure 4.1(c)). This splits the connected components spanning several image slices
into multiple component segments. The PCCA algorithm extends the SLCCA
algorithm by a data structure and employs a method to efficiently memorise the
connections of multiple component segments and combine their associated feature
vectors into one feature vector per connected component. These steps are depicted
in Figure 4.1(c) and (d).

113

i
i

“dissertation” — 2017/11/5 — 13:24 — page 114 — #114 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

The behaviour of the PCCA algorithm can be described as a cut, memorise and
combine approach. The details and key properties of the PCCA algorithm addressed
in this chapter are:

• Parallelism and Scalability: Achieving a high throughput by processing multiple
pixel simultaneously

• Memory-efficiency: Reusing memory entries for several subsequent connected
components in the image

• Real-time processing: Maximum time for combining p slices is equal to pro-
cessing a single slice with the SLCCA algorithm

These properties build the basis for the parallel hardware architecture in Chapter
5 to achieve a processing throughput of up to 6 Gigapixel/s for extracting feature
vectors from an image stream.

The abbreviations and names of data structures used in the following are summarised
in Table 4.1.

(a) (b)

(c) (d)

44 × 118

5 × 11

26 × 66

5 × 4

11 × 22

44 × 95

23 × 45

137×118

Figure 4.1: (a) Original colour image, (b) binary image after segmentation, (c)
extracted feature vectors for each image slices and identification of con-
nected components spanning several image slices, and (d) feature vectors
of the input image after coalescing.
Extracted bounding box feature vectors are shown in black boxes
(width×height in pixel). Connected components and component seg-
ments of connected components which span multiple image slices are
assigned different colours.

114

i
i

“dissertation” — 2017/11/5 — 13:24 — page 115 — #115 i
i

i
i

i
i

Data structures for slice processing
Abbreviation Name

DTi Data table of SPI processing image slice i

FL,i Local label graph for image slice i

FG Global label graph
FV Feature vector
GP Pixel graph
I Source image
L Labelled image

Mi Local merger table for image slice i

Data structures for slice coalescing
Abbreviation Name

GMT Global merger table
GDT Global data table
GLM Global label management

Image parameters
Abbreviation Name

H Image height
p Total number of image slices
pi Number sub-images of level i

W Image width
Wi Width of sub-image of level i

WS Width of an image slice
q Number of level groups

Table 4.1: Nomenclature used in this chapter.

The binary input image I of dimensions W ×H pixels is divided into p slices of equal
width. If the image width W is not an integer multiple of the number of image slices
p, the original input image I is padded with W mod p columns of background
pixels at the right side. This makes each image slice ⌈WS = W/p⌉ pixels wide and
H pixels high. An image slice is scanned in forward raster scan order1. Let (a, b)
be a position in the left-most image slice (0 ≤ a < WS ∧ 0 ≤ b ≤ H). Then, the p

positions simPos(a, b) are processed simultaneously, where

simPos(a, b) = {(a, b), (WS + a, b), . . . , (WS × (p− 1) + a, b)}. (4.1)

The parallel forward raster scan order starts at the top left corner of each image slice,
i.e. the positions simPos(0, 0) are processed in parallel. At the end of the first row

1See the definition of forward raster scan order from Section 2.1.

115

i
i

“dissertation” — 2017/11/5 — 13:24 — page 116 — #116 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

the positions simPos(WS − 1, 0) are processed in parallel, followed by simPos(0, 1)
in the next row, and so on until the end of the image simPos(WS − 1, H − 1) is
reached. The WS ×H-tuple describes this parallel raster scan:

parRasterScan = (simPos(0, 0), . . . , simPos(WS − 1, 0),
simPos(0, 1), . . . , simPos(WS − 1, H − 1)).

(4.2)

The definitions of the pixel graph GP , connectedness, connected component and
component segment used in the following, can be found in Section 2.1.

116

i
i

“dissertation” — 2017/11/5 — 13:24 — page 117 — #117 i
i

i
i

i
i

4.1 Parallel Labelling Process in PCCA

FL,0

FG

GP

G1

v3,2

v4,1

v5,2

v6,1

v7,2

v8,1

v1,2

L1 L3

L2 L5

I

Slice 0 Slice 1 Slice 2

1 2

v2,0

v2,1

L1
L2 L3 L4 L5

LLTGP, FL,i or FG

Edges or arcs of

L4

v0,1

FL,1 FL,2

GP,0 GP,2GP,1

L4
L1

L1 L3 L3

Figure 4.2: This figure shows the graphs resulting from the example image I divided
into three image slices: the pixel graph GP , the local label graphs FL,0,
FL,1, FL,2, the labelled image L, the link table LT and the global label
graph FG.

4.1 Parallel Labelling Process in PCCA

In this section the data structures used in the PCCA algorithm are introduced. For
better understanding an example based on the image in Figure 4.2 is given after the
definition of each data structure.

In SLCCA (Equation 2.6 and 2.8) a vertex va,b in the pixel graph GP represents the
object pixel of the input image I at position (a, b).

V (GP) = {va,b : I[(a, b)] = 1 ∧ (a, b) ∈ imagPos}, (4.3)

117

i
i

“dissertation” — 2017/11/5 — 13:24 — page 118 — #118 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

The set imagePos contains all image positions in I, as introduced in Equation 2.1.
For each pair of adjacent pixels in I there is an edge in the pixel graph GP .

E(GP) ={(va1,b1, va2,b2) : va1,b1 ∈ V (GP) ∧ va2,b2 ∈ V (GP) ∧ ∥(a1, b1)− (a2, b2)∥ = 1
∧ (a1, b1) ∈ imagPos ∧ (a2, b2) ∈ imagPos}.

(4.4)

Dividing the input image I to p image slices, divides the pixel graph GP , as well.
These p sub-graphs are referred to as GP,0, . . . , GP,p−1 in the following. Each
sub-graph GP,i contains all of the vertices of V (GP) associated with image slice
i and all of the edges of E(GP) which join two vertices of GP,i. This makes
GP,0, . . . , GP,p−1 unconnected sub-graphs of GP . In Figure 4.2 the pixel graph GP

consists of ten vertices connected by nine edges. The vertices of the sub-graph
GP,0 are v2,0, v0,1 v2,1 and v1,2. The edges of GP,0 are (v2,0, v2,1), (v0,1, v1,2) and
(v2,1, v1,2).

Definition 21. Instance of an algorithm2: The instance of an algorithm refers to the
application of this algorithm on a particular data structure, e.g. a particular graph
or digraph, or a particular sub-graph or sub-digraph.

An instance of the SLCCA algorithm, for example, is the process of applying the
SLCCA on a particular pixel graph GP or a particular sub-graph of a pixel-graph.
Each instance of SLCCA maintains its own set of internal data structures, such as a
label graph FL. Each image slice of I and its corresponding sub-graph of the pixel
graph GP are processed by a separate instance of SLCCA. In SLCCA, the labelled
image L (see Section 2.3.1 for definition) is an array with the same dimensions as
I. For PCCA, the image is separated into p vertical slice of width WS , where each
image slice is processed by one instance of SLCCA. A provisional label is assigned
to each position of L by the associated SLCCA instance, where 0 is reserved for
background. Each SLCCA instance maintains its own label graph F . Since each
SLCCA instance has its own local label space, their label graphs corresponding
to image slices 0, . . . , p − 1 are called local label graphs FL,0, . . . , FL,p−1 in the
following. For each vertex va,b ∈ V (GP,i) the SLCCA instance processing image slice
i associates va,b with a vertex vLj

∈ V (FL,i) by assigning label Li[(a, b)] := Lj .

In Figure 4.2, the local label graph FL,2 contains two vertices, labelled L4 and
L5 joined by the arc (L4, L5). The vertices v6,1 and v7,2 in sub-graph GP,2 are
associated with L4 by assigning L[(6, 1)] := L4 and L[(7, 2)] := L4. The vertex v8,1
in sub-graph GP,2 is associated with L5 by assigning L[(8, 1)] := L5.

The edges of the pixel graph GP are categorised as slice edges, Es, and border edges,
Eb. Slice edges join two vertices of the same sub-graph GP,i.

Es(GP,i) := {(v1, v2) : v1, v2 ∈ V (Gp,i)}. (4.5)

2This definition for the instance of an algorithm is based on [47, p.29]

118

i
i

“dissertation” — 2017/11/5 — 13:24 — page 119 — #119 i
i

i
i

i
i

4.2 Parallel Union-find Operations in PCCA

Border edges join two vertices of different sub-graphs GP,i and GP,i+1.

Eb := {(v1, v2) : v1 ∈ V (GP,i), v2 ∈ V (GP,i+1), 0 ≤ i < p, i ∈ N0}. (4.6)

Definition 22. Slice-component: A sub-graph K of the pixel graph GP is a slice-
component if K is a connected component of exactly one of the sub-graphs
GP,0, . . . , GP,p−1, and one or more vertices of K are joined by a border edge Eb.

Connected components spanning several image slices consist of several slice-
components (see definition below) and their vertices are joined by border edges in
Eb. These slice-components are again combined to connected components after the
simultaneous processing of GP,0 to GP,p−1, according to SLCCA. This connection
process is achieved by performing one union-find operation for each border edge in
Eb which is carried out by one or more instances of the union-find algorithm, as
explained in the following section.

The global label graph FG is required to identify which of the extracted feature
vectors have to be combined. The global label graph FG is a directed forest
structure to identify vertices of the local label graphs FL,0, . . . , FL,p−1 associated
with slice-components and associate them with their connected components. The
arcs from vertices in the local label graphs FL,0, . . . , FL,p−1 to vertices in the global
label graph FG are stored in the link table LT. A root vertex Lj in local label graph
FL,i, vLj

∈ V (FL,i), associated with a slice-component, is joined with a vertex Gk

of FG (corresponding to Lj ’s connected component) by assigning LTi[Lj] := Gk. In
Figure 4.2, the pixel graph GP of the example image I contains two border edges:
(v21, v32) and (v52, v61). The root vertices of the associated slice-components are
L1, L3 and L4. Since all of these slice-components are associated with the same
connected component associated with the vertex G1 in the global label graph FG,
the arcs (L1, G1), (L3, G1) and (L4, G1) are stored by updating LT.

In order to process multiple slice-components of the same connected component in
parallel, each slice-component is at first associated with vertices of its local label
graph FL,0, . . . , FL,p−1 by one of the p SLCCA instances. In the next step, the
PCCA algorithm associates all trees in FL,0, . . . , FL,p−1 from the same connected
component with a common tree structure in the global label graph FG. Details are
given in the following.

4.2 Parallel Union-find Operations in PCCA

The union-find operations to create the forest structures in the local label graphs
are covered in Section 2.2. To accelerate processing, union-find operations on the
local label graphs FL,0, . . . , FL,p−1 and the global label graph FG are processed in
parallel. In general, several parallel union-find operations on the same tree structure
can lead to false results [100]. However, as GP,0 to GP,p−1 are not connected,

119

i
i

“dissertation” — 2017/11/5 — 13:24 — page 120 — #120 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

processing each sub-graph with a separate instance of the union-find algorithm (as
done in SLCCA) separates the initial problem into p smaller sub-problems. This
allows to carry out p union-find operations simultaneously, one on each of the local
label graphs FL,0, . . . , FL,p−1.

Definition 23. Union-find instance: A union-find instance is an instance of the
union-find algorithm.

The tree structures in the global label graph FG are associated with multiple
slice-components. A naive parallelisation where several union-find instances carry
out operations on the same tree structure of the global label graph FG simultaneously
without any restrictions can, therefore, result in the race condition described in [100].
In the following, hierarchical distributed union-find (HD-UF) (Algorithm 6), an
algorithm to carry out multiple union-find operations in parallel on the same tree
structure of the global label graph FG is described.

HD-UF avoids the race condition described in [100] by restricting the access to a
sub-set of vertices of tree structures in the global label graph FG to single union-find
instances. The goal of HD-UF is to build trees with several levels of hierarchy in the
global label graph FG, where each level in the hierarchy is also a directed tree. The
parallel processing is achieved by applying multiple union-find instances on sub-trees
of the global label graph FG, where each union-find instance transfers operations to
a parent union-find instance. As global labels are created at slice borders, the tree
structures in the global label graph FG are created with a hierarchy required for
this kind of parallelisation, if the image is divide hierarchically to slices, as well. In
the following this idea is evolved to the hierarchical distributed union-find (HD-UF)
algorithm presented in Algorithm 6. In the following the idea of hierarchical slicing
leading to a hierarchical label graph is evolved into the hierarchical distributed
union-find (HD-UF) algorithm presented in Algorithm 6.

At first, the entire input image I is divided into p0 image slices. In this first step,
these image slices and the borders between them are assigned level 0. Each slice of
level i is further divided into pi+1 slices of level i + 1. For q levels, the total number
of image slices, p, is the product of the number of sub-slices of each level, from 0 to
q − 1, i.e.

p =
q−1∏
i=0

pi. (4.7)

For each slice level i, the image slices are assigned a slice identifier from 0 to
(p0 × . . . × pi) − 1, beginning with the left-most slice. The example in Figure 4.3
shows that separating slice 1 (with slice identifier 2) creates two slices of level 1:
slice 2 and slice 3 . Slice 1 is called the super-slice of slice 2 and slice 3 . Slices 2

and slice 3 are called the sub-slices of slice 1 . The terms super-slice and sub-slice
explained in this example are used in the following, too.

120

i
i

“dissertation” — 2017/11/5 — 13:24 — page 121 — #121 i
i

i
i

i
i

4.2 Parallel Union-find Operations in PCCA

Slice identifiers

Slice
level

0

1

q-1

0 1 ... p-1

0 p0-1=21

0 1 2 3 4

...

1

2 3

slcgrp = 2;lvlgrp = 1

p0×p1-1=5

Figure 4.3: The input image I is separated into p vertical slices processed as sub-
images. At first, the image is divided into p0 image slices of level 0.
These are further separated into image slices with a level > 0. A red
arrow indicates the super-slice of a slice. In this example, p0 = 3, p1 = 2,
p2 = 3, leading to a total of p = 18 image slices.

To distinguish the vertices of different union-find instances, the properties index,
lvlgrp and slcgrp are introduced. A vertex v of the global label graph FG is generated
by a makeSet operation (explained in detail later in this section). This makeSet
operation is induced by a connected component crossing an image border. To
associate vertex v with the image border it is generated at, the concepts of level
groups (lvlgrp) and slice groups (slcgrp) are introduced.

Definition 24. Level group - lvlgrp: The level group of a vertex v from the global label
graph FG, lvlgrp(v), is the level of the slice border at which vertex v is generated.

Definition 25. Slice group - slcgrp: A vertex v of the global label graph FG is
generated at a slice border which divides an image slice with slice identifier j to
sub-slices. To associate vertex v with image slice j, vertex v is in slice group j,
slcgrp(v)=j.

The vertices in the global label graph FG with lvlgrp= 0 are all in slcgrp= 0. The
index of a vertex in the global label graph FG is a unique identifier among vertices
with the same lvlgrp and slcgrp of FG which is used to access the associated data
structures. In the example in Figure 4.3, the image slice marked as slice 1 is in
lvlgrp= 0 and slcgrp= 0. Slice 1 is divided into the image slices marked slice 2

and slice 3 . Both, slice 2 and slice 3 are in lvlgrp= 1 as they are the result of

121

i
i

“dissertation” — 2017/11/5 — 13:24 — page 122 — #122 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

dividing a slice of lvlgrp= 0. Since the slice identifier of slice 1 is 2, both slice 2

and slice 3 are in slcgrp= 2.

The sub-graph of the global label graph FG whose vertices all have the same lvlgrp i

and the same slcgrp j, is referred to as sub-graph Fi,j and is defined as

V (Fi,j) ={v : v ∈ V (FG) ∧ lvlgrp(v) = i ∧ slcgrp(v) = j},
E(Fi,j) ={(a, b) : a ∈ V (Fi,j) ∧ b ∈ V (Fi,j)}.

(4.8)

To distribute workload, multiple union-find instances working in parallel are used to
execute union-find operations on the global label graph FG. One union-find instance
is associated with each sub-graph Fi,j of FG. As FG only contains directed trees, a
tree-like hierarchy of union-find instances comes into being, where each union-find
instance of lvlgrp i (i > 0) transfers operations (explained in the next section) to
one instance of lvlgrp i− 1. Each union-find instance can only access its associated
sub-graph of the global label graph FG: Fi,j . Instructions on vertices associated
with other union-find instance cannot be carried out directly, but require further
communication, a topic dealt with in Section 4.4.2.

To handle these multiple levels of hierarchy correctly, the find and the union opera-
tion, introduced in Section 2.2, are modified resulting in a hierarchical distributed
union-find (HD-UF) algorithm (Algorithm 6), as discussed in the following.

Definition 26. Sub-root vertex: The vertices of the global label graph FG in lvlgrp
i which are children of a vertex in FG with lvlgrp < i are referred to as sub-root
vertices.

In classical union-find algorithms introduced before, such as QuickFind (Algorithm
1) or QuickUnion (Algorithm 2), the find operation always returns the root label.
The find operation of HD-UF (Algorithm 6) returns either the root vertex of a tree
structure or a sub-root vertex.

In the following, the union operation of HD-UF (Algorithm 6), which carries out
different instructions on the union-find data structure to join the tree structures that
vertices e and f are a part of, is explained. The sub-root or root vertices of e and f

which are the result of the find operation of HD-UF, are referred to as sr0 and sr1.
The parents of sub-roots sr0 and sr1 are referred to as psr0 and psr1, respectively.
The way in which the union operation of HD-UF (Algorithm 6) processes vertices
e and f depends on the lvlgrp and slcgrp of sr0, sr1, psr0 and psr1. The vertex of
sr0 and sr1 whose parent is in the lower lvlgrp is called srmin. The vertex whose
parent is in the higher lvlgrp is called srmax. The assignment of srmin and srmax

is shown in the HD-UF (Algorithm 6) in lines 16-17. The parent vertices of srmin

and srmax are referred to as psrmin and psrmax (HD-UF in Algorithm 6 line 18),
respectively.

122

i
i

“dissertation” — 2017/11/5 — 13:24 — page 123 — #123 i
i

i
i

i
i

4.2 Parallel Union-find Operations in PCCA

Algorithm 6: Hierarchical distributed union-find (HD-UF) algorithm.
// MakeSet operation to create a vertex and assign a lvlgrp and slcgrp to it.

1 makeSet (vertex e, lvlgrp l, slcgrp s)
2 e.lvlgrp := l
3 e.slcgrp := s
4 parent[e] := ∅

// Find operation to determine the parent vertex e in the same lvlgrp and
execute path compression

5 find (vertex e)
6 if (parent[e]=∅) ∨ (parent[e].lvlgrp<e.lvlgrp then
7 return e // Return vertex e when the parent of e is either root or

sub-root

8 else
9 r := find(parent[e])

10 parent[e] := r
11 return r

// Union operation to join vertices dependent on their lvlgrp and slcgrp.
12 union (vertex e, vertex f)

// Determining lvlgrp and parents
13 sr0 := find(e) ; psr0 := parent[sr0]
14 sr1 := find(f); psr1 := parent[sr1]
15 if psr0.lvlgrp ≤ psr1.lvlgrp then
16 srmin := sr0; srmax := sr1

17 else srmin := sr1; srmax := sr0

18 psrmin := parent[srmin] ; psrmax := parent[srmax]
19 if sr0 ̸= sr1 then
20 if sr0.lvlgrp = sr1.lvlgrp then
21 if srmin.slcgrp ̸= srmax.slcgrp then
22 if psrmin.lvlgrp = srmax.lvlgrp then

// Case (f) in Figure 4.5
23 makeSet(g, srmin.lvlgrp-1)
24 union(g,srmin)
25 union(g,srmax)

26 else // Case (g) in Figure 4.5
27 union(psrmin,srmax)

28 else if (psr0.lvlgrp ̸= sr0.lvlgrp) ∧ (psr1.lvlgrp ̸= sr1.lvlgrp) then
// Case (c) in Figure 4.4

29 parent[srmax] := srmin

30 union(psrmin, psrmax)

31 else parent[srmax] := srmin //Case(a&b) in in Figure 4.4

32 else
33 if psr0 = ∅ ∧ psr1 = ∅ then

// Case (e) in Figure 4.4
34 parent[srmax] := srmin

35 else union(psrmin, psrmax) // Case (d) in Figure 4.4

123

i
i

“dissertation” — 2017/11/5 — 13:24 — page 124 — #124 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

srmax

lvlgrp=i

srmin

(a)

sr0

lvlgrp=i

sr1

lvlgrp<i

psrmin

srmax

lvlgrp=i

srmin

(b) (c)

sr0

(d)

srmin

lvlgrp<i

srmax

lvlgrp=i

(e)

srmin

lvlgrp<i

srmax

lvlgrp=i

psrmin

srmin

srmax lvlgrp=i

lvlgrp<i
psrmax

sr0

srmax

lvlgrp=i

lvlgrp<i

srmin

lvlgrp=i

lvlgrp<i

psrmin

srmax

lvlgrp=i

lvlgrp<i

srmin

lvlgrp=i

lvlgrp<i

Figure 4.4: Different scenarios from HD-UF (Algorithm 6) for joining vertices of the
global label graph FG with the same slcgrp dependent on their lvlgrp.

(f) (g)

slcgrp=j+1slcgrp=j slcgrp=j+1slcgrp=j

slcgrp=j+1slcgrp=j slcgrp=j+1slcgrp=j

lvlgrp<i

lvlgrp=i

lvlgrp=i

lvlgrp<i g

Figure 4.5: Different scenarios from HD-UF (Algorithm 6) for joining vertices of
the global label graph FG associated with different component segments
dependent on their slcgrp.

The possible combinations of these properties are depicted in Figure 4.4 and 4.5
and the instructions of HD-UF (Algorithm 6) in lines 19 to 35 are discussed in the
following. In cases (a) to (e) in Figure 4.4, the vertices e and f are in the same
slcgrp. In cases (f) and (g) shown in Figure 4.5 the slcgrps of vertex e and f are
different.

(a) The vertices e and f and their root vertices sr0 and sr1 are in the same lvlgrp.
Therefore, srmin is made the parent of srmax.

(b) The vertices e and f are in the same lvlgrp as one sub-root and one root vertex
of e and f . Therefore, srmin becomes parent of srmax.

124

i
i

“dissertation” — 2017/11/5 — 13:24 — page 125 — #125 i
i

i
i

i
i

4.2 Parallel Union-find Operations in PCCA

(c) Both sub-roots of e and f are in the same lvlgrp as e and f and the parent
vertices of both are in a lower lvlgrp. Therefore, srmin is made parent of srmax

and a union operation is performed on psrmin and psrmax.

(d) Sub-root vertex srmin is in the same lvlgrp as psrmax, which is lower than the
lvlgrp of srmax. As psrmin=srmin, a union operation is performed on psrmin

and psrmax.

(e) The sub-root vertices of e and f are in different lvlgrps, therefore, srmin is
made the parent of srmax.

(f) The sub-root vertices of both e and f , srmin and smax, are in the same lvlgrp,
but in different slcgrps. To join them, a new vertex g with a lower lvlgrp is
created by a makeSet operation and two union operations are issued to join
srmin and smax root vertices with the new vertex g.

(g) The sub-root vertices of both e and f , srmin and smax, are in the same lvlgrp,
but in different slcgrps. The parent of srmin, psrmin, is in a lower lvlgrp.
Therefore, srmax is made a child of psrmin by issuing a union operation to the
union-find instance that srmax is associated with.

The union operation of the HD-UF algorithm (Algorithm 6) recursively joins the
sub-root vertices of e and f if they are in a lower lvlgrp for cases (c) and (d), as
shown in Figure 4.4. In the cases (f) and (g) the union operation is applied on
vertices of different sub-graphs Fi,j , Fk,l of the global label graph FG, where i ̸= k

or j ̸= l. Each union-find instance only has access to the parents of its associated
vertices. Therefore, the makeSet instruction and the union instruction on srmax

must be forwarded to the associated union-find instances.

Since there is only a single sub-root vertex per connected component in each sub-graph
Fi,j of the global label graph FG if union from HD-UF (Algorithm 6) is applied, the
union-find instructions are distributed among all union-find instances. Since find
from HD-UF (Algorithm 6) always returns the sub-root vertex or the root vertex,
several union-find instances can perform union-find operations on the same tree
structure of the global label graph FG simultaneously. Each instance carries out
operations on its associated vertices. This enables parallel union-find processing
on all sub-graphs Fi,j simultaneously by restricting the access to a vertex to its
associated union-find instance. In this way, the race condition described in [100] is
avoided.

125

i
i

“dissertation” — 2017/11/5 — 13:24 — page 126 — #126 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

4.3 Global Operations

The graphs in Figure 4.2 show an example of the data structures used by PCCA to
associate every object pixel of input image I with exactly one connected component.
First, the object pixels of each image slice are associated with a vertex of their
local label graph FL,0, . . . , FL,p−1. This labelling process is described in detail in
Chapter 2. The PCCA algorithm deals with associating vertices of the local label
graphs FL,0, . . . , FL,p−1 of the same connected component which span multiple
slices created by multiple SLCCA instances (each processing one image slice) with
a common forest structure in the global label graph FG. The global operations
presented in Pseudocode 8 (global operations) use a combination of union-find and
lookup operations to build a forest structure in which a directed path from each
vertex in the pixel graph GP to a root vertex in FL,0, . . . , FL,p−1 or to a root
vertex in FG exists. This associates every object pixel of input I with its connected
component. Since union, find and makeSet operations are applied on the local label
graphs FL,0, . . . , FL,p−1 and the global label graph FG, the notation

operation ({vertices, lvlgrp, slcgrp}, graph)

is used. For instance, union({e,f},FL,5) carries out a union operation on vertex e and
f which both belong to the local label graph associated with image slice 5, FL,5. The
steps of the global operations (global operations are shown in Pseudocode 8) define
the union-find operations for joining slice-components associated tree structures
in different local label graphs FL,0, . . . , FL,p−1, which are connected in the pixel
graph GP via one or multiple border edges from Eb.

A global new label operation (GNLO) is invoked if vertices e and f from the label
graphs FL,0, . . . , FL,p−1 representing local labels are assigned to adjacent border
positions of different neighbouring slices and both are not associated with a vertex
of the global label graph FG via LT . The GNLO associates the root vertices of e

and f from the local label graphs FL,0, . . . , FL,p−1 with a new vertex in the global
label graph FG, newGL, generated by a makeSet operation.
A global merger operation, global to local, (GMOGL) is invoked if the local labels
associated with the vertices e and f are assigned to different image slices and e is
associated with a vertex FG via an arc in LT , and f is not. In this case, an arc is
added to LT to associate the root vertex of f with the same vertex in FG.
A global merger operation, global to global, (GMOGG) is induced if the local labels
associated with the vertices e and f are assigned to different image slices and both
are associated with different vertices of FG via an arc in LT .
If the local labels associated with the vertices e and f are assigned to the same
image slice and both are associated with different vertices of FG via an arc in LT , a
global merger operation within a slice (GMOSlice) operation is induced. Both merger
operations, GMOGG and GMOSlice, carry out a union operation on the vertices in the
global label graph FG which are associated with e and f . A GMOSlice, additionally,

126

i
i

“dissertation” — 2017/11/5 — 13:24 — page 127 — #127 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

Pseudocode 8: Global operations — Union-find operations carried out by
global operations
1 GNLO(vertex e, vertex f)
2 makeSet({newGL, lvlgrp, slcgrp}, FG)
3 LT[find(e,FL,i)] := newGL
4 LT[find(f ,FL,j)] := newGL

5 GMOGL(vertex e, vertex f)
6 LT[find(f ,FL,i)] := LT[find(e,FL,i)]

7 GMOGG(vertex e, vertex f)
8 h:= LT[find(e,FL,i)]
9 k:= LT[find(f ,FL,j)]

10 union({h,k},FG)

11 GMOSlice(vertex e, vertex f)
12 i:=find(e,FL,i); h:= LT[find(i,FL,i)]
13 j:=find(f ,FL,i); k:= LT[find(j,FL,i)]
14 union({i,j},FL,i)
15 union({h,k},FG)

carries out a union operation on the root vertices of e and f in FL,0, . . . , FL,p−1.
This reduces the number of tree structures in FL,0, . . . , FL,p−1 associated with a
single connected component to one per slice.

4.4 Partitioning of the PCCA Algorithm

The global operations described in Pseudocode 8 (global operations) cover the
functionality to detect slice-components and associate them with their connected
component. In this section, the PCCA algorithm is partitioned to match the
distributed memory model and the architecture to execute instructions in parallel
of state-of-the-art computing systems, such as multi-core CPUs or FPGAs. These
optimisations include:

• Parallelisation:
Distributing workload to several processing instances

• Memory efficiency:
Reduction of the memory requirements by recycling the memory allocated by
vertices of completed connected components

• Memory distribution:
Usage of several small distributed memories instead of a single large one

127

i
i

“dissertation” — 2017/11/5 — 13:24 — page 128 — #128 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

...

SPI0

...

Image Distribution Instance (IDI)

SPI1
...

...

SPIp-1

CIr-1

CI0 CIr-2

Communication link for

Pixel stream of I in parallel raster scan
Pixel stream of I in forward raster scan

SPI and CI neighbour communication
Receiving new global labels (generateNewGL)
Global operations
Completed feature vectors

...

Figure 4.6: Interaction of constituents of PCCA.

The process of detecting connections of slice-components and the extraction of
their feature vectors is described in Section 4.4.1. Section 4.4.2 explains how to
combine the feature vectors of these slice-components efficiently to the feature vectors
of their connected components. The following paragraph, parallel processing and
communication in PCCA, introduces the constituents of PCCA and their interaction.
This is followed by the paragraph positions and labels in PCCA, which introduces
the naming conventions and the terminology used in this chapter for assigning labels
to the labelled image L.

Parallel Processing and Communication in PCCA

The PCCA algorithm (Algorithm 7) receives a binary pixel stream in forward
raster scan order I_RS and outputs the extracted feature vectors of connected
components in I_RS to FV _Extr. The pseudocode in Algorithm 7 shows the
instances processing pixel data and control instructions simultaneously to carrying
out PCCA. In fact, the instance in each line of Algorithm 7 processes input data
independently of the instances described in the other lines of Algorithm 7. So, rather
than a sequential order of execution, Algorithm 7 describes the communication of the
individual instances processing data in parallel, forming PCCA. This communication
is depicted in detail in Figure 4.6 to show the different types of communication
between the instances introduced in the following.

128

i
i

“dissertation” — 2017/11/5 — 13:24 — page 129 — #129 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

The binary image received as pixel stream I_RS is divided into p image slices by the
image distribution instance (IDI) which generates p binary image streams in parallel
raster scan order, I_PRS0, . . . , I_PRSp−1 (parRasterScan, see Equation 4.2). Each
of these binary image streams is forwarded to one of the p slice processing instances
(SPI). Each SPI is an instance of SLCCA introduced in Chapter 2 extended by the
ability to detect connected components crossing a slice border. The feature vectors
of component segments belonging to the connected component are called adjacent
feature vectors. To associate adjacent feature vectors with the same connected
component, coalescing instances (CI) are introduced which keep a record of which
feature vectors are adjacent by assigning the same global labels to the pixels of
their component segments. Each SPI communicates to its neighbour SPIs to detect
adjacent feature vectors. After detection, a global label is acquired by an SPI by
calling the sub-routine generateNewGL (explained later in Pseudocode 16). Adjacent
feature vectors are transferred from an SPI to a CI via global operations (GOs),
as discussed in Section 4.4.1 and Section 4.4.2. As GOs are processed sequentially
within a CI to accelerate processing, the workload is distributed among several
CIs. These coalescing instances CI0, . . . , CIr−1 are arranged in a tree, where each
CI processes GOs (Pseudocode 15) and generates new global labels (Pseudocode
16), as discussed in detail in Section 4.4.2. All SPIs and CIs output feature vectors
simultaneously; these are therefore concatenated to the vector FV _Extr (Algorithm
7, line 6).

129

i
i

“dissertation” — 2017/11/5 — 13:24 — page 130 — #130 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Algorithm 7: PCCA — The parallel SLCCA algorithm.
Input: I_RS
Output: FV_Extr

// Image distribution instance (IDI), see Equation 4.2
1 IDI(Input→I_RS, Output→I_PRS)

// Slice processing instances 0, . . . , p − 1
2 SPI0(In→(I_PRS0, CIP rnt.generateNewGL(), . . .),

Out→(toPrntCISP I,0, SPI_FV0, . . .))
. . .

3 SPIp−1(In→(I_PRSp−1, CIP rnt.generateNewGL(), . . .),
Out→(toPrntCISP I,p−1, SPI_FVp−1, . . .))

// Coalescing instances 0, . . . , r − 1
4 CI0:

// Pseudocode 15
processGO(In→(toPrntCIchld, . . .), Out→(toPrntCICI,0, FV_CI0, . . .))
// Pseudocode 16

generateNewGL()
. . .

5 CIr−1:
processGO(In→(toPrntCIchld, . . .), Out→(toPrntCICI,r−1, FV_CIr−1, . . .))
generateNewGL()

// Concatenation of feature vectors extracted by SPI and CI
6 FV_Extr := (FV_SPI0, . . ., FV_SPIp−1, FV_CI0, . . ., FV_CIr−1)

Positions and Labels in PCCA

This subsection introduces the terminology used to describe labels and positions in
the following. A local label has a one-to-one relation to vertex from one of the local
label graphs FL,0, . . . , FL,p−1. Local labels are assigned to the labelled image L. The
local labels associated with image slice i are in columns i×WS to (i + 1)×WS − 1 of
L. The local label Li[(a, b)] refers to the local label in slice i of L located in column
a and row b.

Li[(a, b)] = L[(a + i×WS , b)]. (4.9)

A global label corresponds to a vertex in global label graph FG. The relation of global
and local labels is stored in the link table LT. The neighbourhood ηL for selecting
the local label of the current position X = (x, y) is different depending on which
column of the image slice is processed. In the first column of an image slice, positions
B = (x, y − 1) and C = (x + 1, y − 1) of the current slice are considered to select
the local label of the current pixel. In the last column positions A = (x− 1, y − 1),

130

i
i

“dissertation” — 2017/11/5 — 13:24 — page 131 — #131 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

A B C

D X

B C

X

α

firstColumn lastColumn¬borderPos

BA

X γ
β

Left
neighbour

slice i-1
Current slice i

Right
neighbour
slice i+1

Figure 4.7: Neighbourhood positions considered in the first column, last column and
in between.

B = (x, y− 1) and D = (x− 1, y) are considered. LA, . . . , LD are the labels assigned
to L[A], . . . L[D], as shown in Figure 4.7. Since the same local label is assigned
to the labelled image L at position A and D, L[A] and L[D], if they are object
pixels [67], this label is referred to as LAorD. The global label associated with LAorD

by an arc in the link table LT is GAorD. The local label LB is associated via an arc
in the LT with GB , and the local label LC is associated via an arc in the LT with
GC .

A position in imagePos (see Section 2.1), which is either in the first or last column
of an image slice, is a border position,

borderPos = firstColumn ∨ lastColumn. (4.10)

If the current pixel is not at a border, the positions A through D are considered for
ηL.

ηL :=

{B, C}, firstColumn,

{A, B, D}, lastColumn,

{A, B, C, D}, ¬borderPos.

(4.11)

The set Lη contains the local labels in the neighbourhood ηL which are not back-
ground label 0.

Lη := {L[i] : i ∈ ηL, L[i] ≠ 0}. (4.12)

The local label in Lη assigned first to L in a raster scan3 is referred to as LX [65],
and is assigned to L as the provisional label of the current position:

L[(x, y)] := LX . (4.13)

3Section 2.3.5 deals with the method to determine the (local) label assigned first in raster scan.

131

i
i

“dissertation” — 2017/11/5 — 13:24 — page 132 — #132 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

An entry in the LT represents an arc from a vertex in one of the local label graphs
FL,0, . . . , FL,p−1 to a vertex in the global label graph FG. The link table LT is a
1-D array with an entry for each local label associated with a vertex in one of the
local label graphs FL,0, . . . , FL,p−1. Each of these entries contains the global label
associated with a vertex of FG. If a vertex in FL,0, . . . , FL,p−1 is not associated with
a vertex in the global label graph FG, the corresponding entry in LT is zero. The
global labels in the neighbourhood ηL, Gη, are the global labels associated with the
local labels in Lη.

Gη := {LT [i] : i ∈ Lη, LT [i] ̸= 0}. (4.14)

Equation 4.15 shows that the minimum label in Gη is associated with LX by
extending the local operations (new label, label copy and merger operation) defined
in Section 2.2. The next available global label newGL is associated with LX when a
global new label pattern (GNLPat) is detected, which is explained in Section 4.4.1.
If there are no global labels in the neighbourhood of the current pixel LX (Gη = ∅)
then the link table entry of LX (LT [LX]) is set to 0. Otherwise, the minimum of
the global label Gη is associated with LX .

LT [LX] :=

newGL, GNLPat,

0, Gη = ∅,
min{Gη}, otherwise.

(4.15)

The reference to a global label is always available in the link table LT . The operation
from Equation 4.15, therefore, propagate global labels in raster scan direction along,
together with the associated local labels.

To select the global label of a border pixel, the global labels associated with border
pixels of the neighbour slices are considered, too. The positions and labels of border
pixels are denoted as follows. The position to the top left of a left border pixel of
the current image row y is denoted as α. The position below α is not considered for
labelling as it succeeds the current position X = (x, y) in parallel raster scan. The
positions to the right and top right of the right border pixel of the current image
row y are denoted as β and γ. The global labels associated with these positions are
called Gα, Gβ and Gγ . Gβ and Gγ have the same global label if their associated
pixels are not background, therefore, their label is referred to as Gβorγ .

This makes the positions in the neighbourhood of global labels ηG relevant for
selecting a global label for the current pixel.

ηG :=

{α, B, C}, firstColumn,

{A, B, D, β, γ}, lastColumn,

{A, B, C, D}, ¬borderPos.

(4.16)

Figure 4.7 summarises all the positions relevant for local and global labelling depend-
ing on the position in the image. Those for selecting a local label are marked in grey.
For global labelling the positions marked white or grey positions are relevant.

132

i
i

“dissertation” — 2017/11/5 — 13:24 — page 133 — #133 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

4.4.1 Slice Processing Instance

A slice processing instance (SPI) is an instance of SLCCA extended with the ability
to issue global operations. It extracts feature vectors of all connected components
in an image slice and detects connected components spanning slice borders.

An SPI extracts feature vectors from image slice i by associating all vertices of
a connected component in GP,i with the same tree structure in local label graph
FL,i. In the following, the current SPIi processes image slice i. Its data structures
are identified by subscript i. The data structure of neighbour slices are identified
by subscripts i− 1/i + 1. To combine the slice-components of neighbour slices, an
SPI identifies global operations (GO) from the pixel patterns in its image slice and
the border pixels of its neighbours’ image slices. These GOs correspond to the
union-find instructions from HD-UF (Algorithm 6). Their instructions are carried
out on SPIs and coalescing instances (CIs). Each SPI carries out instructions on
its own data structures and issues GOs to its associated CI to induce operations
on the global label graph FG. Each SPI is associated with exactly one CI, in the
following referred to as the SPI’s parent CI. The operations that the CIs carry out
are introduced in Section 4.4.2. There are two sub-categories of global operations:
global label operations (GLOs) and global combination operations (GCOs). GLOs
deal with associating local labels of slice-components with a global label. In addition,
GLOs associate all vertices of global labels assigned to slice-components with the
tree structure in the global label graph FG. GCOs deal with combining the feature
vectors of slice-components (from different image slices) to a single feature vector
for each connected component. The instructions of GOs carried out by the SPIs are
described in the following. Instructions of GOs carried out by CIs are discussed in
Section 4.4.2. Since GO are data dependent, they contain the row number of their
detection as an arbitration tag to establish their order in the CI. The necessity for
these arbitration tags is discussed in Section 4.4.2.

133

i
i

“dissertation” — 2017/11/5 — 13:24 — page 134 — #134 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Global Operations in the SPIs

The image patterns which induce global operations depend on local labels in L and
the global labels which they are associated with. The arc from the vertex of a local
label in slice i to a vertex of a global label is stored in the link table LTi. The link
table of the SPI processing the left neighbour slice is LTi−1. The link table of the
SPI processing the right neighbour slice is LTi+1.

In Equation 4.17 to Equation 4.22, for convenience, the local labels and global labels
are mapped to Boolean variables. The Boolean value of local or global labels which
is equal 0, is False or otherwise True. To improve the readability, these Boolean
variables use the same names as their corresponding global or local labels.

A global new label pattern (GNLPat) is detected for two adjacent object pixels
belonging to different image slices whose local labels are both not associated with a
global label.

GNLPat := borderPos ∧ LX ∧ ¬GX ∧ (Lα ∧ ¬Gα ∨ Lβorγ ∧ ¬Gβorγ). (4.17)

The instructions carried out in an SPI when a GNLPat is detected are shown in
Pseudocode 9 (GLNO in SPI). To induce the parent CI to create the vertex associ-
ated with global label newGL in the global label graph FG, a GNLO is sent to the
CI. The new global label is requested from the parent CI. Details of the instructions
within the CI to generate a global label are given in Section 4.4.2 (Pseudocode 16,
generateNewGL). Sending a GNLO containing the global label newGL and the arbi-
tration tag rowNo to the parent CI is denoted as toPrntCI(GNLO(newGL,rowNo))
in Pseudocode 9 (GLNO in SPI) and in the following text. Both the local label
assigned to the current position and the local label assigned to a neighbour slice are
joined with newGL by updating the link tables of the current and the neighbour
SPI. If a GNLPat is detected in the first column of a slice i, LTi−1 is updated; if
detected in the last column LTi+1 is updated. Figure 4.8 shows an example of an
image containing a GNLPat, the tree structures in the local label graphs FL,i, FL,i−1
and the global label graph FG before and after the GNLO is executed.

If the current position is not at a border (¬borderPos), a global merger pattern within
a slice (GMPatSlice) is identified for two different local labels in the neighbourhood Lη,
and two different global labels in the neighbourhood Gη. This requires LAorD ̸= LC

and GAorD ̸= GC , as described in Equation 4.18.

GMPatSlice :=¬borderPos ∧ Lx ∧ LAorD ∧ L[C]
∧ LAorD ̸= LC ∧GAorD ∧GC ∧GAorD ≠ GC .

(4.18)

The instructions that are carried out in an SPI when a GMPatSlice is detected are
shown in Pseudocode 10 (GMOSlice in SPI). The local label assigned to the current
pixel LX is associated with the minimum global label by updating the link table.
In addition, a GMOSlice to join the vertices of the global labels in FG is sent to

134

i
i

“dissertation” — 2017/11/5 — 13:24 — page 135 — #135 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

Pseudocode 9: GLNO in SPI — Instructions of GNLO carried out in an SPI
1 if GNLPat then

// A new global label, newGL, is requested from the
associated CI, see Pseudocode 16

2 newGL := generateNewGL()
3 LTi[LX] := newGL
4 if firstColumn then
5 LTi−1[Lα] := newGL
6 else if lastColumn then
7 LTi+1[Lβorγ] := newGL
8 toPrntCI(GNLO(newGL,rowNo))

LX ∧ ¬LT[LX]

Lα ∧ ¬LT[Lα]

LX Lα

Slice iSlice i-1

GNLO

LTi-1[Lα]
LTi [LX]

:= newGL
:= newGL newGL FG

LX Lα

In
SPI

GNLPat

FL,i-1 FL,i

FL,i-1 FL,i

Figure 4.8: The global new label pattern detected in the first column of the current
image slice i induces a global new label operation. This associates the
vertices of the component segments labelled Lα and LX with the vertex
of global label newGL.

the parent CI. In SLCCA, using the minimum local label is not sufficient to obtain
the current local label when local labels are recycled (see Section 2.3.5). In PCCA,
assigning the minimum global label to the current pixel is sufficient as QuickUnion
with path compression (Algorithm 3) is used by the CI, as the find operation of
QuickUnion with path compression always obtains the root vertex.

Figure 4.9 shows an example image in which LC precedes LA in raster scan order
(LC ≺ LA) and GA < GC . Therefore, the vertex of LC becomes the parent of the
vertex of LA. By updating LT , LC is associated with the minimum global label GA.

A global merger pattern from a global to a local label (GMPatGL) is detected for
two adjacent object pixel from different slices of the labelled image L which are
assigned local labels. In addition, a GMPatGL requires that exactly one of these

135

i
i

“dissertation” — 2017/11/5 — 13:24 — page 136 — #136 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Pseudocode 10: GMOSlice in SPI — Instructions of GMOSlice carried out
in an SPI
1 if GMPatSlice then
2 parent := min(GAorD, GC)
3 child := max(GAorD, GC)
4 LTi[LX] := parent
5 toPrntCI(GMOSlice(parent,child,rowNo))

Slice i

GMOSlice

GA

 LA LC

GC

LA∧LT[LA] LC∧LT[LC]

Mi[LA]
LTi[LC]

GMT[GC]

:= LC

:= GA

:= GA

LA LC

GC GA

In
SPI

In
CI

FL,i

FG

FL,i

FG

GMOSlice

Figure 4.9: The GMPatSlice detected in image slice i induces a GMOSlice. This
makes LA a child of LC , and GC a child of GA. The arcs in LT are
removed and a new arc from LC to GA is added.

two local labels is associated with a global label. The condition GLleft of Equation
4.19 detects merger patterns in the first column of an image slice, where either a
global label is associated with the current (GX) or with the adjacent pixel in the left
neighbour slice (Gα). Condition GLright of Equation 4.19 detects merger patterns
in the last column of an image slice, where either a global label is associated with
the current (GX) or with the adjacent pixel in the right neighbour slice (Gβorγ). A
GMPatGL is, therefore, detected when GLright or GLleft hold.

GLleft :=firstColumn ∧ ((GX ∧ Lα)⊕Gα),
GLright :=lastColumn ∧ ((GX ∧ Lβorγ)⊕Gβorγ),

GMPatGL :=LX ∧ (GLleft ∨GLright).
(4.19)

The instructions carried out in an SPI when a GMPatGL is detected are shown in
Pseudocode 11 (GMOGL in SPI) and explained in the following.

136

i
i

“dissertation” — 2017/11/5 — 13:24 — page 137 — #137 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

If the local label LX is joined with the global label GX , the local label in the
neighbour image slice (Lα or Lβorγ) is joined with GX also. To join Lα with GX ,
the link table LTi−1 of the SPI processing the left neighbour slice is updated. The
process of joining Lβorγ with GX updates the link table LTi+1 of the SPI processing
the right neighbour slice. If the vertex of Lα is joined with a vertex Gα in the global
label graph FG, the local label of LX is joined with the global label Gα by updating
the link table of the current SPI, LTi. Analogous to Lα, the following holds true
for Lβorγ : If the vertex of Lβorγ is joined with a vertex Gβorγ in the global label
graph FG, the local label of LX is joined with the global label Gβorγ by updating
the link table of the current SPI, LTi. The parent CI is informed about this event
by sending a global merger operation GMOGL.

Pseudocode 11: GMOGL in SPI — Instructions of GMOGL carried out in
an SPI
1 if GMPatGL then
2 if GX then
3 if firstColumn then
4 LTi−1[Lα] := GX

5 else if lastColumn then
6 LTi+1[Lβorγ] := GX

7 else
8 if firstColumn then
9 GX := LTi−1[Lα]

10 else if lastColumn then
11 GX := LTi+1[Lβorγ]
12 LTi[LX] := GX

13 toPrntCI(GMOGL(GX , rowNo))

In Figure 4.10, an example of an image with a GMPatGL is shown. The digraphs
on the right show the tree structures in FL,i, FL,i−1 and the global label graph FG

before and after carrying out GMOGL.

137

i
i

“dissertation” — 2017/11/5 — 13:24 — page 138 — #138 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

LX ∧ ¬LT[Lx]

Lα ∧ LT[Lα]

Slice iSlice i-1

GMOGL

LTi[Lx]:=Gα Gα

LX Lα

FG

Gα

LX LαFL,i-1

FG

In
SPI

GMOGL

FL,i

FL,i-1 FL,i

Figure 4.10: The GMPatGL detected in the first column of the current image slice
i induces a GMOGL. This associates the vertices of the component
segments labelled LX with Gα.

A global merger pattern from a global label to a global label (GMPatGG) is detected
for two adjacent local labels assigned to different slices of the labelled image L, where
both local labels are associated with different global labels, as shown in Equation
4.20.

GMPatGG := borderPos∧GX∧(Gα∨Gβorγ)∧(GX ̸= Gα∨GX ̸= Gβorγ). (4.20)

The instructions carried out in an SPI when a GMPatGG is detected are shown in
Pseudocode 12 (GMOGG in SPI). To induce the parent CI to associate the vertices
of both global labels in the global label graph FG, a GMOGG and both global labels
are sent to the parent CI.

Pseudocode 12: GMOGG in SPI — Instructions of GMOGG carried out in
an SPI.
1 if GMPatGG then
2 parent := min{Gη}
3 child := max{Gη}
4 toPrntCI(GMOGG(parent, child, rowNo))

In Figure 4.11, an example of an image with a GMPatGG is shown. The digraphs on
the right show the tree structures in local label graphs FL,i, FL,i−1 and the global
label graph FG before and after carrying GMOGG. In the example shown, GX is
assumed to be smaller than Gα. Therefore, Gα becomes a child of GX .

138

i
i

“dissertation” — 2017/11/5 — 13:24 — page 139 — #139 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

LX ∧ LT[LX]

Lα ∧ LT[Lα]

Slice iSlice i-1

GMOGG

Gα

Lα

GX

LX

GX Gα

LX LαGMT[Gα]:=GX

FG

FG

In
CI

FL,i-1 FL,i

FL,i-1 FL,i

Figure 4.11: The GMPatGG detected in the first column of the current image slice
i induces a GMOGG. In this example, GX < Gα, therefore, vertex Gα

becomes a child of GX .

Simultaneous Global Operations

Due to the simultaneous processing of p image slices, multiple simultaneous global
patterns in different SPIs can be detected, that cannot be processed independently.
Therefore, there is a maximum of p− 1 simultaneous global patterns in an image
row, e.g. a connected component which spans all p image slices. Simultaneous global
patterns simGPi in two neighbour slices i and i− 1 are detected if both the Boolean
conditions sim1 and sim2 from Equation 4.22 hold true.

simGPi := sim1 ∧ sim2. (4.21)

sim1 :=(GNLPati ∨GMPatGL,i) ∧ (GNLPati−1 ∨GMPatGL,i−1),
sim2 :=(Li[0, y] = Li[W − 1, y − 1]) ∨ (Li[0, y − 1] = Li[W − 1, y − 1]).

(4.22)

The condition sim1 holds true if in both slices i and i− 1 either an GNLPat or a
GMPatGL is detected. The condition sim2 holds true if the local label assigned to
the labelled image slice Li at the left border is equal to the local label assigned to
the right border.

The image slices are scanned in parallel raster scan (see Equation 4.1 and Equation
4.2). Simultaneously detected global operations at positions simPos(x, y) are,
therefore, based on the tree structures created from processing the previous positions
in parallel raster scan order. The previous positions are simPos(x − 1, y), or
simPos(W − 1, y − 1) if the current positions are simPos(0, y). The GLOs carried

139

i
i

“dissertation” — 2017/11/5 — 13:24 — page 140 — #140 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Slice i Slice i+1Slice i-1

GLNO GMOGL GMOSlice

1 2

3 4

5 6

G1 G2

G3

G4

Figure 4.12: The global patterns in image slice i−1 and i are detected simultaneously.
Since SPI i − 1 and i only have a knowledge of the direct neighbour
slices, image segments are associated with multiple global labels. This
is detected and adapted by inducing a GMOSlice operation.

out by SPIi−1 and SPIi, therefore, join one local label with two different global
labels by updating the link tables LTi−1 and LTi. This is resolved by associating
LX of the current SPIi, LX,i, with the smaller global label of GX,i and GX,i−1, as
shown in Pseudocode 13 (simultaneous global operations). To join the vertices of
GX,i and GX,i−1 in the global label graph FG and to undo the double association
of LX,i, a GMOSlice is sent to the parent CI.

Pseudocode 13: Simultaneous global operations — Instructions carried out
in an SPI if two simultaneous global merger patters are detected
1 if simGP then
2 parent := min(GX,i, GX,i−1)
3 child := max(GX,i, GX,i−1)
4 LTi[LX , i] := parent
5 toPrntCI(GMOSlice(parent, child, rowNo))

Figure 4.12 shows an example of an image in which several global merger patterns
are detected simultaneously. The global new label patterns (GNLPat) at positions
1 and 2 induce global new label operations creating two vertices in the global label
graph FG labelled G1 and G2, as shown in Figure 4.13(a). The slice-components
of the common vertex of local label graph FL,i are associated with both vertices,
G1 and G2. At position 2 a simGP is detected and as shown in Figure 4.13(a)
(by executing simultaneous global operations Pseudocode 13) an arc from G2 to G1

140

i
i

“dissertation” — 2017/11/5 — 13:24 — page 141 — #141 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

(a) 1 + 2
Vertex of
 common

 slice
 component

G1 G2

→
G1

G2

(b) 3 + 4

Vertex of
 common

 slice
 component

G2 G3

G1

→
G1

G2 G3

(c) 5 + 6

Vertex of
 common

 slice
 component

G3 G4

G1

G2

→
G1

G2 G3 G4

Figure 4.13: These images show the global label graph FG and the local label graphs
FL,i−1, FL,i and FL,i+1 after the global operations induced by the
patterns at positions 1 to 6 from Figure 4.12. The large vertices G1
to G4 are from the global label graph FG. The small vertices are of
FL,i−1, FL,i and FL,i+1. Dashed arcs are from LT , solid ones from the
global label graph FG.

141

i
i

“dissertation” — 2017/11/5 — 13:24 — page 142 — #142 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

is created in LT . This is depicted in Figure 4.13(a). Since G1 and G2 belong to
the same connected component, a global merger operation, GMOSlice, is invoked to
join G1 and G2 in the CI. The global label operation induced by the GNLPat at
position 3 creates global label G3. The slice-component of the common vertex of
local label graph FL,i is associated with the slice-components of the vertices labelled
G2 and G3, as shown in Figure 4.13(b). Since a simGP is detected at position 4 , a
global merger operation is issued (GMOSlice) to join the vertices in the global label
graph FG labelled G2 and G3. The patterns at positions 5 and 6 are processed
analogously which results in the tree structures shown in Figure 4.13(c).

GCOs in the Slice Processing Instance

Global combination operations (GCOs) involve combining the feature vectors of
slice-components to a single feature vector for each connected component. A GCO is
issued to the CI by an SPI for each completed4 slice-component. A slice-component
is a connected component which spans at least two image slices. Each GCO consists
of the feature vector of its slice-component, the global label associated with its
slice-component and an arbitration tag. The row number that a GCO is detected in
is used as an arbitration tag, as discussed in Section 4.4.2.

4The property completed is defined in Section 2.3.5, Equation 2.28.

142

i
i

“dissertation” — 2017/11/5 — 13:24 — page 143 — #143 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

4.4.2 Coalescing Instance

A coalescing instance (CI) executes global operations (Pseudocode 8) which carry
out union-find operations on the global label graph FG and combines feature vectors
of slice-components to feature vectors of connected components.

When more than one CI is used, they are arranged in a tree. There is one root CI of
lvlgrp 0. An SPI detects global operations and transfers them to the CI. Coalescing
instances issue global labels of lvlgrp=i to SPIs when a global new label operation is
detected at an image border of level i. Each CI with lvlgrp i (i > 0) is connected to
one CI with lvlgrp i− 1 which is called its parent CI. CIs with the same lvlgrp with
the same parent CI are referred to as sibling CIs.

All CI instances simultaneously receive global operations (GOs) to combine feature
vectors of slice components issued by child SPIs, child CIs or sibling CIs. However,
the GOs must be carried out in the same order that the associated image patterns
appear in the original input image. The two types of GOs, GLOs and GCOs, are
issued simultaneously, and therefore are buffered in separate queues referred to as
GLOq and GCOq. GCOs received at the input of the CI contain feature vectors of
slice-components. Global label operations (GLOs) contain union-find instructions
issued by SPIs or CIs. The union-find instructions contained in GLOs describe
which feature vectors to combine. In the following, the data structures to store the
global label graph FG and the feature vectors are introduced. The operations on
these data structures and necessary control information are explained in detail. A
mechanism to establish the order of GOs is introduced.

Data Dependencies of Global Operations

All of the p SPIs issue GOs simultaneously. In a CI of the highest lvlgrp this requires
one GLOq and one GCOq for each connected SPI. CIs of a lower lvlgrp receive
GOs from their child CIs, i.e. require one GLOq and one GCOq for each child
CI. In this parallel en-queuing process, the data dependencies between the GOs
resulting from the order of the raster scan are not considered. Figure 4.14 illustrates
an example showing the deviation of the order of GOs in queues and their data
dependencies due to the round-robin policy employed as explained in the following.
The GOs in Figure 4.14 associated with the black slice-components are already

processed. The GOs associated with these black slice-components are, therefore, not
shown in the queues in Figure 4.14. The hatched slice-component (blue and red in
Figure 4.14) in slice 0 induces four GLOs and two GCOs, which are buffered in the
queues GLOq0 and GCOq0. The hatched slice-component in slice 1 induces one GCO
buffered in GCOq1. The GCOs at the head of GCOq0 and GCOq1 are dependent
on the GLOs in GLOq0, as indicated by dashed arrows. The arbitration tags are
assigned in the SPI and correspond to the row number in which a GO is detected.
To meet the data dependencies, the GOs are read according to increasing arbitration

143

i
i

“dissertation” — 2017/11/5 — 13:24 — page 144 — #144 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

GCO

GLOq0 GLOq1 GCOq1GCOq0

...

Slice 0 Slice 1 Slice p-1

Data dependency

X X X

...

GNLO

GMOSlice

GMOSlice

GMOSlice

GCO

GCO∅

GO Arbitration

GOout

Figure 4.14: Example showing the deviation of the order the GOs are stored in
queues to with regards to their data dependencies.

tag number from the queues. Pseudocode 14 (read order mechanism) presents a
mechanism enabling an efficient realisation to establish the arbitration tag read
order as hardware architecture. It exploits the property that GOs are en-queued in
ascending order according to their arbitration tag and that these arbitration tags
are continuous. The row number that a GO is issued in is used as its arbitration
tag. GOSync are GOs consisting of nothing but an arbitration tag. They are used
to synchronise CIs for image rows without global patterns issued by SPIs or CIs.
Therefore, the arbitration tags of the GOs in each of the queues are ascending and
continuous, as the image is processed in raster scan order and GOSync operations
are issued.

Pseudocode 14 (read order mechanism) describes the ordering process of the GOs
in the GLOqs and GCOqs. Its input vector GOq is the concatenation of the
global operations at the head of GLOqs and GCOqs associated with the current CI.
The GOs at GOq are ordered according to the data dependencies by a continuous
comparison of their arbitration tags with the read barrier, rdBarrier. Initially,

144

i
i

“dissertation” — 2017/11/5 — 13:24 — page 145 — #145 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

Pseudocode 14: Read order mechanism — Mechanism for a hardware-efficient
detection of the read order of the GO queues.

Parameter : j = # children + # siblings
Input: GOq(0 to 2× j − 1)
Output: GOout

1 block := (False, . . . , False)
2 rdBarrier := 0
3 while True do
4 for i in 0 to 2× j − 1 do
5 if GOqi.arbtag > rdBarrier then
6 blocki := True
7 else
8 GOout := GOqi.pop

9 if block = (True, . . . , T rue) then
10 rdBarrier++
11 block := (False, . . . , False)
12 GOout :=(SYNC,rdBarrier)

rdBarrier is reset to 0. This allows reading all GOs of the queues with arbitration
tag 0. If the arbitration tag of the GO at the head of a queue i is greater than
rdBarrier the read access to this queue is blocked by setting the blockedi flag. As
soon as the read access to all queues is blocked, the rdBarrier is incremented by
one and access to all queues is again granted by resetting the vector of blocked
flags. Additionally, a GOSync is issued to signal the parent CI that the rdBarrier is
updated, which extends this mechanism to multiple CI levels. All GOs at the head
of non-blocked queues are read in a round-robin manner and output to GOout. This
results in a stream of GOs with ascending arbitration tags and complies with the data
dependencies the GOs have due to the raster scan processing of the original input
image. The merits of the method used in Pseudocode 14 (read order mechanism)
with respect to a realisation in hardware are:

• An immediate decision without reading the heads of the queues is possible for
outputting a global operation to GOout.

• The checks to block read access of queues are carried out simultaneously for
all queues.

The hardware architecture for GO arbitration is discussed in Section 5.3.1.

145

i
i

“dissertation” — 2017/11/5 — 13:24 — page 146 — #146 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Processing of Global Operations in a Multi-CI System

This paragraph describes the detailed realisation of a coalescing instance for a
system which uses multiple CIs. The principles described in this sub-section lay the
foundation of the CI also used for the special case of systems using only a single CI,
as described in the following sub-section.

The realisation of a coalescing instance requires an efficient data structure to store
the global label graph FG. The tree structures of the global label graph FG are stored
in the global merger table (GMT) which is realised as a 1-D array. An arc joining
the vertex of global label G1 with the vertex of global label G2, (G1, G2) ∈ E(FG),
is stored in the GMT by updating GMT [G2.index] with G1. The index of global
labels is defined in Section 4.2. For storing feature vectors, the global data table
(GDT) is introduced which is realised as a 1-D array index by the associated global
label. All CIs have a common name space for global labels. Therefore, there can be
arcs which join vertices of global labels which are associated with different CIs. To
detect completed connected components and to recycle global labels, the number
of associated child vertices in the local label graphs FL,0, . . . , FL,p−1 and the global
label graph FG is used, as explained in the following. This method requires the
in-degree for each vertex of a global label to be stored.

Definition 27. In-degree of a global label: The in-degree of a vertex vG of a global
label G is the number of arcs in E(FG) and LT pointing to vG. Global labels whose
vertices point to vG are in E(FG). Local labels whose vertices point to vG are in
LT .

The 1-D array INDEG is the data structure storing the in-degree of a global label G

at INDEG[g.index]. A connected component is detected as completed if the in-degree
of the global label is zero and the global label is a root vertex in FG.

Each CI in a multi-CI system has its own GDT, GMT and INCNT data structure and
is assigned a lvlgrp and a slcgrp. The instructions in Pseudocode 15 (CI instructions)
are discussed in the following in a top-down approach. Each operation which
requires more than one access to a data structure, or is iterative is expressed as a
sub-routine. The instructions of Pseudocode 15 create the tree structures in the
global label graph FG which associate each slice-component of the input image with
its connected component. This is achieved by carrying out the global instructions
issued by an SPI or child/sibling CI on the data structures GMT, GDT and INDEG,
as explained in the following.

Each GO contains either one or two global labels (lbl0 and lbl1), as introduced in
Section 4.4.1. GCOs additionally contain a feature vector fv. If neither lbl0 nor
lbl1 have the same lvlgrp as the receiving CI, the GO is forwarded to the parent
CI. For processing a GCO, the GCO’s global label lbl0 and its feature vector fv
is used. If the GDT contains no feature vector for global label lbl0, the feature
vector fv, contained in a GCO, is copied to GDT[lbl0.index]. If the GDT already

146

i
i

“dissertation” — 2017/11/5 — 13:24 — page 147 — #147 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

Pseudocode 15: CI instructions — Instructions induced by global operations
(GOs) carried out by the coalescing instance
1 processGO (GO)

// Processing GCO
2 if GO.lbl0.lvlgrp ̸= CIlvlgrp

3 ∧ GO.lbl1.lvlgrp ≠ CIlvlgrp then
// Forward GO to parent CI

4 toPrntCI(GO)
5 else if GO.type = GCO then
6 fv := GO.fv
7 label := GO.lbl0
8 GDT[l.index] := GDT[l.index] ◦ fv
9 decInDeg(label)

// Processing GLOs
10 else if GO.type = GNLO then
11 l := GO.lbl0.index
12 GMT[l] := GO.lbl0
13 INDEG[l] := 2
14 else if GO.type = GOInc then
15 incInDeg(GO.lbl0)
16 else if GO.type = GODec then
17 decInDeg(GO.lbl0)
18 else if GO.type = GMOGL then
19 incInDeg(GO.lbl0)
20 else if GO.type = GMOGG then
21 globalJoin(GO.lbl0, GO.lbl1)
22 else if GO.type = GMOSlice then
23 globalJoin(GO.lbl0, GO.lbl1)
24 decInDeg(max(GO.lbl0, GO.lbl1))

contains a feature vector for global label lbl0, feature vector fv is combined with and
stored to GDT[lbl0.index]. The ◦-operator is used, as defined in Section 2.3.3, as a
combination operator dependent on the extracted feature vectors. As the feature
vector of a GCO is associated with a slice-component, the in-degree of the associated
global label is decremented by one when a GCO is processed by a CI. Decrementing
INDEG is expressed as a sub-routine decInDeg which handles the special case when
the in-degree becomes zero. Further details regarding decInDeg (Pseudocode 18) are
discussed later in this section.

147

i
i

“dissertation” — 2017/11/5 — 13:24 — page 148 — #148 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

A global new label operation (GNLO) makes global label lbl0 a root by updating the
GMT [lbl0.index] with global label lbl0. Since every new global label is associated
with two slice-components (see Section 4.3), INDEG[lbl0.index] is initialised with two.
CIs issue GOInc operations to increment the in-degree of global labels associated with
their parent or sibling CI by calling sub-routine incInDeg (Pseudocode 17). CIs issue
GODec operations to decrement the in-degree of global labels associated with their
parent or sibling CI by calling sub-routine decInDeg (Pseudocode 18). A GMOGL

joins another slice-component with the associated global label lbl0. This is required
to increment the in-degree by one, handled by sub-routine incInDeg (Pseudocode 17).
GMOGG and GMOSlice join the sub-root vertices of their associated global labels
(lbl0 and lbl1 used in the CI instructions in Pseudocode 15). Sub-routine globalJoin
realises the union (as in HD-UF shown in Algorithm 6) operation distinguishing the
slcgrp and lvlgrp of the global labels. A GMOSlice is detected when two global labels
are joined which are both associated with a common vertex in local label graph FL,i.
Since SPIs always associate vertices in FL,i with the smaller global label via LT (see
Pseudocode 10, line 4), the in-degree of the larger global label is decremented by
one.

Each CI issues a global label to the associated SPI upon request. A CI is associ-
ated with the SPIs processing image slices whose borders have the same level as
the CI. Global labels are generated and recycled by the global label management
(GLM) operations (Pseudocode 16) within a CI. The sub-routine generateNewGL
(Pseudocode 16) combines the slcgrp of the CI, the lvlgrp of the CI and the index at
the head of its global reuse queue (GR) to a global label, which is passed on to an
SPI. The GR is the queue which contains one index for each global label of its CI.
The global reuse queue (GR) is initialised with one index for each global label of
its CI. Global labels of completed slice-components are recycled to GR by calling
sub-routine recycleGL (Pseudocode 16) from decInDeg (Pseudocode 18, line 16).

Pseudocode 16: GLM operations — Operations to generate and recycle global
labels (GL).
1 generateNewGL()
2 G.slcgrp := CI.slcrp
3 G.lvlgrp := CI.lvlgrp
4 G.index := GR.pop()
5 return(G)
6 recycleGL(GL G)
7 GR.push(G)

Sub-routine incInDeg, presented in Pseudocode 17, increments the in-degree of a
global label by one. If the global label lbl has the same lvlgrp as the CI instance
calling incInDeg, the in-degree is increased by incrementing INDEG[lbl.index] by
one. If the lvlgrp of lbl is smaller, a GMOInc is issued to the parent CI.

148

i
i

“dissertation” — 2017/11/5 — 13:24 — page 149 — #149 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

Pseudocode 17: In-degree increment — Sub-routine for incrementing the
in-degree
1 incInDeg (lbl)
2 if GMT[lbl.index].lvlgrp < CIlvlgrp then
3 toPrntCI(GOinc(lbl));
4 else
5 INDEG[lbl.index]++;

The sub-routine decInDeg shown in Pseudocode 18 decrements the in-degree of
global label lbl by one. If the in-degree of a global label is zero, the slice-component
or connected component that lbl is associated with, is detected as completed. The
memory in GMT, GDT and INDEG is, therefore, not required anymore and reused
by recycling lbl to the GR. If lbl is the global label of a root vertex, no further
processing for the extraction of its feature vector is required. It is, therefore, output
(line 7 in Pseudocode 18) and its GDT entry is cleared. If lbl is not the global label
of a root vertex, its feature vector is combined with the feature vector of its parent
and its GDT entry is cleared. For the case that lbl is a sub-root, it is combined
with its parent by issuing a GCO to the parent CI containing lbl’s feature vector,
GDT [lbl.index], and the parent label of its global label. If lbl is not a sub-root it is
combined with its parent’s feature vector by the current CI.

The sub-routine globalJoin presented in Pseudocode 19 (global join) joins the sub-root
vertices of two global labels, l0 and l1, by updating the data structures GDT, GMT
and INDEG. It extends the union operation from HD-UF (Algorithm 6) by providing
the specific instructions on the data structure associated with its CI. The recursion
(as in cases (c), (d) and (f)) of union in HD-UF (Algorithm 6) are realised by
issuing GOs to sibling or parent CIs. In the following, the different operations of
HD-UF (Algorithm 6) to process cases (a) to (g) are discussed using the terminology
introduced in Section 4.2. For case (a) and (b), both global labels l0 and l1 have the
same lvlgrp. The global labels of the associated sub-roots srmin and srmax are joined
by updating GMT[srmax] with srmin and by incrementing the in-degree of srmin by
one. To process case (e) the same operations as in (a) and (b) are used, however the
incInDeg subroutine issues a GMOInc to the parent CI which is required, because
srmin and srmax are in different lvlgrps. For processing case (c), the parent vertices
of the sub-roots of l0 and l1, GMT[srmin] and GMT[srmax] respectively, are joined
by issuing a GMOGG to the parent CI. This corresponds to the recursive call of
union in HD-UF (Algorithm 6). The sub-root vertices of l0 and l1 are joined by
updating GMT[srmax] with srmin and incrementing the in-degree of srmin by one.
It is also requires to reduce the in-degree of GMT[srmax] by one, which is realised
by issuing a GMODec to the parent CI. For processing case (d), the parent vertices
of the sub-roots of l0 and l1, GMT[srmin] and GMT[srmax] respectively, are joined
by issuing a GMOGG to the parent CI. In cases (f) and (g), srmin and srmax have

149

i
i

“dissertation” — 2017/11/5 — 13:24 — page 150 — #150 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Pseudocode 18: In-degree decrement — Sub-routine for decrementing the
in-degree INDEG iteratively.
1 decInDeg (lbl)
2 INDEG[l] - - // Decrementing in-degree
3 if INDEG[lbl.index] = 0 then
4 l := lbl.index
5 p := GMT[l.index]
6 if p = l then

// Completed connected component is detected
7 output(GDT[l])
8 GDT[l] := ∅

// Combination with parent FV
9 else if p.lvlgrp < CIlvlgrp then

// lbl is sub-root
10 toPrntCI(GCO(p, GDT[l]))
11 GDT[l] := ∅
12 else
13 decInDeg(p)
14 GDT[p.index] := GDT[p.index] ◦ GDT[l]
15 GDT[l] := ∅

// Recycling of lbl by using Pseudocode 16
16 recycleGL(lbl)

the same lvlgrp but different slcgrps, i.e. are associated with sibling CIs. In case (f)
the vertex associated with srmin does not have a parent vertex associated with a
lower lvlgrp. As the parent vertex associated with global label srmax is stored in the
GMT of the sibling CI, it is not possible to determine whether srmax is associated
with a global label which has a lower lvlgrp. Therefore, a new global label newGL is
requested from the parent CI and associated with srmin by updating GMT[srmin]
with newGL. To associate srmax with newGL, a GMOGG is issued to the sibling CI.
In case (g), the parent vertex of srmin is associated with a global label of a lower
lvlgrp: psrmin. To associate srmax with psrmin, a GMOGG is issued to the sibling
CI.

150

i
i

“dissertation” — 2017/11/5 — 13:24 — page 151 — #151 i
i

i
i

i
i

4.4 Partitioning of the PCCA Algorithm

Pseudocode 19: Global join — Global join operation when multiple CIs are
used
1 globalJoin(l0, l1)
2 sr0 := find(l0,GMT); psr0 := GMT[sr0]
3 sr1 := find(l1,GMT); psr1 := GMT[sr1]
4 if sr0 ̸= sr1 then
5 if psr0.lvlgrp≤psr1.lvlgrp then
6 srmin := sr0; srmax := sr1

7 else srmin := sr1; srmax := sr0

// Lvlgrp of both sr = CIlvlgrp

8 if sr0.lvlgrp = sr1.lvlgrp = CIlvlgrp then
9 if srmin.slcgrp ≠ srmax.slcgrp then

10 if psrmin.lvlgrp = srmax.lvlgrp then
// Case (f)

11 newGL := toPrntCI(GNLO)
12 GMT[sr0] := newGL
13 toNghCI(GMOGG(sr1,newGL))
14 else // Case (g)
15 toNghCI(GMOGG(sr1,psr1))

16 else if (psr0.lvlgrp ̸= sr0.lvlgrp) ∧ (psr1.lvlgrp ̸= sr1.lvlgrp) then
// Case (c)

17 toPrntCI(GMOGG(GMT[srmin],GMT[srmax]))
18 toPrntCI(GMODec(GMT[srmax]))
19 GMT[srmax] := srmin

20 incInDeg(srmin)
21 else // Cases (a)&(b)
22 GMT[srmax] := srmin

23 incInDeg(srmin)

24 else
25 if psrmax = srmin then

// Case (e)
26 GMT[srmax] := srmin

27 incInDeg(srmin)
28 else // Case (d)
29 toPrntCI(GMOGG(GMT[srmin],GMT[srmax]))

151

i
i

“dissertation” — 2017/11/5 — 13:24 — page 152 — #152 i
i

i
i

i
i

4 PCCA - The Parallel SLCCA Algorithm

Processing of Global Operations in a Single CI System

In the special case that a single coalescing instance (CI) processes all the global
operations issued by the SPIs, all global labels have the same slcgrp as the CI, and
the same lvlgrp as the CI. This reduces the operation globalJoin to the case shown
in Figure 4.4(a). The use of globalJoinSingle shown in Pseudocode 20 instead of
globalJoin is, therefore, sufficient.

A single CI carries global operations one after the other, due to their sequential data
dependencies (Section 4.4.2). As the maximum number of global operations increases
with the number of SPIs, the maximum performance of a single CI limits throughput
of a parallel SLCCA instance, as shown for an FPGA hardware architecture in [64].

On the one hand, a single joining operation of two global labels requires fewer
instructions when using a single CI, as shown in Pseudocode 20 (single CI global
join). On the other hand, a single CI becomes a processing bottle-neck for a large
number of SPIs, hence limiting the scalability with the number of SPIs. The question
of whether a single CI or multiple CIs are more efficient is implementation-specific
and discussed in Section 5.5 by comparing the resources required for hardware
architectures dependent on the image size and processing throughput.

Pseudocode 20: Single CI global join
1 globalJoinSingle(l0, l1)
2 sr0 := find(l0,GMT)
3 sr1 := find(l1,GMT)
4 if sr0 ≠ sr1 then
5 srmin := min(sr0,sr1)
6 srmax := max(sr0,sr1)
7 GMT[srmax] := srmin

8 incInDeg(srmin)

152

i
i

“dissertation” — 2017/11/5 — 13:24 — page 153 — #153 i
i

i
i

i
i

4.5 Summary and Contributions of the PCCA Algorithm to the State of the Art

4.5 Summary and Contributions of the PCCA Algorithm
to the State of the Art

The parallel SLCCA algorithm, PCCA, which was introduced and described in detail
in this chapter is an improvement to the state of the art on several levels, as pointed
out in the following.

• Improved scalability by parallel feature vector combination: In the parallel
CCA architecture in [71] (the predecessor of PCCA), the limitation in terms of
scalability results from a single coalescing instance which carries out union-find
operations and combines feature vectors. The PCCA algorithm eliminates this
bottleneck by introducing multiple communicating coalescing instances.

• Distributed union-find algorithm: A hierarchical distributed union-find (HD-
UF) algorithm is introduced to process multiple global operations in parallel.
Only the usage of HD-UF allows the aforementioned improvement of distribut-
ing operations from one to multiple coalescing instances. Chapter 5 shows that
the throughput of the PCCA hardware architecture increases with the number
of image slices processed in parallel. The hierarchical distributed union-find
algorithm, therefore, contributes significantly to the increased throughput
achieved by the PCCA hardware architecture presented in Chapter 5.

• On-the-fly processing of the binary pixel stream: The pixel data of the binary
image stream is processed on the fly as it is received. A frame buffer to store
an entire input image is, therefore, not required. This is especially important
to realise a resource-efficient PCCA hardware architecture, as storing large
images (e.g. UHD8k) in on-chip memory requires a significant amount of
modern processing devices.

These properties of the PCCA algorithm enable the use of spatial parallelism and
temporal parallelism on modern processing devices, such as FPGAs and multi-core
GPPs, to accelerate processing. The improvements at the algorithmic level of PCCA
are a necessity for the design of the efficient PCCA hardware architecture presented
in the following chapter which achieves approximately double the throughput as the
architecture in [71].

153

i
i

“dissertation” — 2017/11/5 — 13:24 — page 154 — #154 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 155 — #155 i
i

i
i

i
i

5 Hardware Architecture of Parallel
SLCCA

This chapter describes the design of the dedicated hardware architecture carrying out
the parallel Single-Lookup Connected Components Analysis (PCCA). The architecture
proposed in this chapter is customised for (but not limited to) a realisation as a
hardware architecture on an FPGA. The hardware sub-units of the PCCA hardware
architecture are discussed in Sections 5.1 to 5.3 in detail, followed by a discussion
of the resource sharing of sub-components of the PCCA architecture in Section 5.4
and the experimental results and required hardware resources in Section 5.5.

The hardware architecture of a slice processing instance (SPI) is denoted as a
slice processing unit (SPU). The hardware architecture of a coalescing instance
(CI) is denoted as a coalescing unit (CU) in the following. Figure 5.1 shows the
block diagram of the PCCA hardware architecture with p SPUs and q levels of
CUs arranged in a tree. The following sections evolve each component from the
algorithmic description, as given in Chapter 4, to an architecture at register-transfer
level.

5.1 Image Distribution Unit

The image distribution unit (IDU) separates the incoming pixel stream into p pixel
streams in order to generate p vertical image slices. This effectively leads to the
separation of GP into the sub-graphs GP,0, . . . , GP,p−1 described in Section 4.2.

Figure 5.2 shows the architecture of the IDU at register-transfer level. At the input
interface WIDU binary pixels of the input stream are received in parallel, which are
consecutive in raster scan order. For the implementation, WIDU = 64 was chosen, as
shown in Figure 5.2. This value, however, can vary and depends on the bandwidth
of the input stream. As the incoming pixel data are received in raster scan order,
they are buffered by p first-in-first-out (FIFO) memories called IDU-FIFOs. There is
one IDU-FIFO to buffer the pixel data received for each image slice. The IDU-FIFO
associated with image slice i is referred to as IDU-FIFOi. The W pixels received for
each image row are distributed to the IDU-FIFOs by writing pixel 0, . . . , ⌈W/p⌉ − 1
of each row to IDU-FIFO0, followed by writing pixel ⌈W/p⌉, . . . , 2× ⌈W/p⌉ − 1 to
IDU-FIFO1, and so on. Pixel data of image row i + 1 are written to the IDU-FIFOs

155

i
i

“dissertation” — 2017/11/5 — 13:24 — page 156 — #156 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

CU
lvlgrp

0

1

q-1

CU

CU CUCU

CU CUCU CUCU

SPU0

...

...

...

...

...

...

SPU1 SPUp-1SPU2

...

...

...

...

...

... ...

Image distribution unit

...

...

Communication link for

Global operation
Pixel stream

Neighbour operation

...

...

Figure 5.1: This figure shows the block diagram of the PCCA hardware architecture
consisting of one image distribution unit (IDU), p slice processing units
(SPUs) and q levels of coalescing units (CUs) arranged in a tree. The
arrows show the communication links.

while the pixel data of image row i is read. Each IDU-FIFO, therefore, requires
the capacity to store the pixel data for two image rows of its associated image slice,
i.e. 2× ⌈W

p ⌉ pixels. The pixel data at the outputs of the IDU-FIFOs are applied
pixel by pixel to the output of the IDU after the first image row is received. By
reading one pixel in each clock cycle it is ensured that the p slice streams created
are synchronous, i.e. the pixels in the ith columns of each image slice are output
simultaneously.

The inputs and outputs of IDU-FIFOs are operated with independent and different
frequencies: fpix at the input and fCCA at the output. To ensure that none of the
IDU-FIFOs overflows, the frequency ratio of fpix and fCCA must be

fCCA

fpix
≥ WIDU

p
× 6

5 . (5.1)

156

i
i

“dissertation” — 2017/11/5 — 13:24 — page 157 — #157 i
i

i
i

i
i

5.2 Slice Processing Unit

Image Distribution
Unit

64 Bit

64 Bit

64 Bit

1 Bit

ID
U

-F
IF

O
0

64 Bit

64 Bit

64 Bit

1 Bit

ID
U

-F
IF

O
1

64 Bit

64 Bit

64 Bit

1 Bit

ID
U

-F
IF

O
p

-1

...

...

...

64 Bit

p Bit p Pixel streams

Parallel input stream

Figure 5.2: Data-path of architecture of the image distribution unit at register-
transfer level for WIDU = 64.

5.2 Slice Processing Unit

Each of the pixel streams generated by the IDU is processed by a slice processing
unit (SPU), which extracts the feature vectors of slice components and connected
components within its image slice. An SPU which processes the pixel stream of
image slice i associates all vertices of a connected component in GP,i with the same
tree structure in the label graph FL,i (see blue arcs in Figure 4.2) by carrying out
union-find instructions on the label graph FL,i and extracting the feature vectors of
the associated connected components.

In Figure 5.3, the block diagram of architecture of the SPU is shown as extending
the architecture from Figure 3.1 in Section 3.1 by the ability to communicate to
other SPUs (processing a neighbour slice) and being able to detect and issue global
operations. In the following, only the units of the SPU added to or altered by
the architecture from Section 3.1 which processes an entire image, are discussed.
The black arrows in Figure 5.3 are the interfaces and connections added due to
multi-slice processing. The grey arrows are connections that already exist in Figure
3.1. The widths of control signals in Figure 5.3 and the following figures of this
section are given in bits. Data signals are illustrated as abstract types, such as GO
(global operations, introduced in Section 4.3), as their widths depend on the image
size.

157

i
i

“dissertation” — 2017/11/5 — 13:24 — page 158 — #158 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Local
component
association

Pixel
valid

Pixel
value

1 bit

1
 b

it

fvValid

Feature vector
collection

fvData

Slice Processing Unit

Scan control

Label
selection

Neighbourhood
context

Label
management

Row
buffer

WIDX

1 bit

Global
component
association

LeftLbl/
RightLbl

newGL GO

LTset left/right

Lα/Gα

Lβγ /Gβγ

GCOGLO

CU communication

S
P

U
 c

o
m

m
u

n
ic

a
ti

o
n

1 bitID
U

 i
n

te
rf

a
ce

LTset

WIDX

WIDXWGL + WIDX +1bit

WFV

WFV

WIDX

WAL

WAL

WGL

WGL

WGL

Figure 5.3: This figure shows the architecture of the slice processing unit with the
capability of detecting and executing global operations. The black arrows
indicate the internal and external connections added to the architecture
from Figure 3.1 to enable multi-slice processing.

158

i
i

“dissertation” — 2017/11/5 — 13:24 — page 159 — #159 i
i

i
i

i
i

5.2 Slice Processing Unit

5.2.1 Local and Global Component Association Units

The local component association unit maintains the tree structures of the label graph
FL,i for its associated image slice with the identifier i in a local merger table Mi

which is realised as an 1-D array indexed by the local label. The parent of a local
label v is stored in Mi[v]. Since there are no arcs between local labels of different
slices, each SPU maintains its own name space for local labels starting at 1.

The global component association unit joins vertices from FL,i with their parent
vertices in the global label graph FG (introduced in Figure 4.2). These connections
are established by the link table LT, which is realised as a 1-D array associating a
local label l with its global label g by updating LT with LT [l] := g. The link table
LT is read for each local label in the labelled image L to determine the global label
associated with each local label from L. When a slice component is completed, the
global label of its associated feature vector is also determined by a lookup in the link
table LT. The link table LT is adapted when a GLO is detected by the label selection
unit of the current SPU or a GLO is detected in one of the neighbour SPUs, e.g.
the write accesses to LTi−1 or LTi+1 in Algorithm 9 or 11. As part of the PCCA
hardware architecture, the link table LTi in the global component association unit
receives a local label at its input in every clock cycle. The corresponding global label
is output in the following clock cycle. The LT is realised as true-dual port [133]
block-RAM (BRAM). One port is used to lookup the global label of the continuous
stream of local labels at its input received by the local component association unit.
The second port of the LT is shared between the label selection unit, the neighbour
SPUs and the feature vector collection unit. It is used as a write port when GLOs
are detected and as a read port when GCOs are detected.

5.2.2 Feature Vector Collection Unit

Local feature vectors define the properties of slice components or connected compo-
nents relative to the coordinates within the processed image slice. Global feature
vectors define the properties of slice components or connected components relative to
the coordinates of the entire input image. The feature vector collection (FVC) unit
outputs the global feature vector for each connected component or slice component
in its processed image slice. To save memory resources, however, the FVC unit
stores and updates local feature vectors associated with each local label l in L

(labelled image) in the data table (DT) at DT [l.index] , as explained in more detail
in Section 3.1.3. Local feature vectors are transferred to global feature vectors when
the associated connected component of a slice component is detected as completed.

The FVC unit uses the index of a completed feature vector to check whether the
feature vector is associated with a global label. If the completed feature vector is
associated with a global label it belongs to a slice component. Therefore, a GCO
containing the global feature vector and the global label is issued and passed on to

159

i
i

“dissertation” — 2017/11/5 — 13:24 — page 160 — #160 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

LCLBLA

LD

Neighbourhood
context

LX

GCGBGA

GD
Gright

GX

Gleft

Lright

Lleft

LA LB LC LDGAGBGCGD

LB

GB

WAL

WGL

W
G
L +

W
A
L

Figure 5.4: Hardware architecture of neighbourhood context at the register-transfer
level.

the CU. If a completed feature vector in DT is not associated with a global label,
its global feature vector is output to fvData. The parts of the local feature vectors
related to image positions are updated after being read out of DT. The exact way
to transform local to global feature vectors depends on the extracted features. For
bounding boxes, a global feature vector FVG is derived from a local feature vector
FVL by adding the offset of the processed image slice. This offset is calculated
within the SPU as the product of the slice identifier sliceid and the slice width Ws:

FVG :=

FVL.xmin

FVL.ymin

FVL.xmax

FVL.ymax

+

sliceid ×WS

0
sliceid ×WS

0

 . (5.2)

SPUs only process image slices of level q − 1, i.e. sliceid are the slice identifiers of
level q − 1.

5.2.3 Neighbourhood Context Unit

The neighbourhood context unit provides the local and global label in the pixel
neighbourhood ηL to the label selection unit. Figure 5.4 shows its hardware architec-
ture at the register-transfer level. Parallel access to local and global labels in the

160

i
i

“dissertation” — 2017/11/5 — 13:24 — page 161 — #161 i
i

i
i

i
i

5.2 Slice Processing Unit

current pixel’s neighbourhood is achieved by storing LA, . . . , LD and GA, . . . , GD

in registers. The local and global labels of LC and GC are received by the local
component association and global component association units shown in Figure 5.3.
The registers are connected to provide the neighbourhood labels for position (x+1, y)
in the next cycle by assigning the labels

LA :=L−
B ,

LB :=L−
C ,

LC :=M [L[x + 2][y − 1]],
LD :=L−

X ,

GA :=G−
B ,

GB :=G−
C ,

GC :=LT [L[x + 2][y − 1]],
GD :=G−

X ,

(5.3)

where the labels with superscript − are the labels in the neighbourhood of the
previous pixel. To keep the labels in the neighbourhood consistent when carrying out
merger operations, multiplexers are added to assign the local/global label assigned
to the current pixel to a register. When a propagating (local) merger pattern is
detected, LB is updated with LX and GB is updated with GX , as defined in Section
2.20. If a local merger pattern was detected for the previous pixel and the current
pixel is an object pixel whose LC is an object pixel (I[x + 2, y − 1] = 1), then LC is
updated with LX instead of the output of the local label association units. The same
holds true for the global label GC : if a local merger pattern was detected in the
previous pixel and the current pixel is an object pixel whose LC is an object pixel
(I[x + 2, y− 1] = 1), then GC is updated with GX instead of the output of the global
label association units. If the link table LT is updated to join local label l with a
global label g, all global labels where the local label is equal to l, are updated with g.
Since updates of LT are initiated by the current or a neighbour SPU, multiplexers
are required for GA, GB and GC .

The local and global label at the left and right border of the current image row
are provided to the neighbour SPUs by storing the value of LX/GX in the reg-
isters Lleft/Gleft and Lright/Gright in the first/last column of each row. If the
left-most/right-most pixel of the current row is not an object pixel, the label as-

161

i
i

“dissertation” — 2017/11/5 — 13:24 — page 162 — #162 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

signed to the pixel above is used. In this way diagonal connection are considered, as
well.

Lleft :=
{

L[0, y], I[0, y] = 1
L[0, y − 1], otherwise,

Gleft :=LT [Lleft],

Lright :=
{

L[W − 1, y], I[W − 1, y] = 1
L[W − 1, y − 1], otherwise,

Gright :=LT [Lright].

(5.4)

The registers Lleft and Gleft are provided to the left neighbour SPU and used
as Lβγ and Gβγ to select the label of border pixels and to detect global merger
patterns. The registers Lright and Gright are provided to the right neighbour SPU
and used as Lα and Gα to select the label of border pixels and to detect global
merger patterns.

5.2.4 Label Selection Unit

The label selection unit uses the registers in the neighbourhood context unit of the
current SPU and the two neighbour SPUs to select LX and GX , as described in
Section 4.4.1. It issues global label operations (GLOs) and acquires a new global
label (newGL) via a direct connection to the associated CU.

162

i
i

“dissertation” — 2017/11/5 — 13:24 — page 163 — #163 i
i

i
i

i
i

5.3 Coalescing Unit

5.3 Coalescing Unit

The coalescing unit (CU) receives GOs from its child unit or sibling unit to combine
the feature vectors of slice components with their connected component. A child
unit is either an SPU or a CU, a sibling unit is another CU with the same lvlgrp
which is required to combine feature vectors of image slices of the same level (see
page 121 for the definition of lvlgrp). Distributing GOs to multiple CUs allows
parallel processing. The GOs associated with the same CU, however, need to be
processed sequentially. Figure 5.5 shows a block diagram of the CU architecture.
GOs received by child units or sibling units are buffered in queues: GLOs in GLO
queues (GLOQ) and GCOs in GCO queues (GCOQ). For each of the k connections
to a child unit or sibling unit, one GLOQ and one GCOQ is required. The GO
arbitration is the sub-unit of the CU which evaluates the arbitration tags of the
GOs at the head of the GLOQs and GCOQs to comply with the data dependencies
from the input image. The global label management (GLM) unit issues global labels
(GLABs) to child SPUs or child CUs and stores global labels recycled by the GO
processor. A major task of the CU is to carry out find operations on the GMT
(Global Merger Table). Since every lookup of a find operation is dependent on the
preceding lookup operation, the latency of the GMT determines the throughput
of the CU. Therefore, the GMT is realised as on-chip block-RAM (BRAM), since
the result of a read operation is available in the next clock cycle [133]. These
data dependencies of find operations make the use of instruction level parallelism
techniques such as pipelining [52] inefficient or impossible. This is a main motivation
for the design of the GO processor which is the main processing unit of the CU
discussed in 5.3.2. The GDT and INDEG (introduced in Section 12) are mapped
to BRAMs, too, as their read latency is also crucial to the throughput of a CU.
Storing the data of GMT, GDT or INDEG in off-chip memory would require a
connection via a (single) memory controller. As there are several instances of the
CU on the same (FPGA) chip, the memory controller’s bandwidth would need to
be shared among the CUs. When implementing the data structures as on-chip
BRAMs, the required bandwidth is distributed to several memories each of which
has a guaranteed bandwidth and latency. The sum of the bandwidth of the used
on-chip BRAMs combined is significantly higher than the bandwidth of an external
memory controller [129,133].

5.3.1 Arbitration of Global Operations

The architecture shown in Figure 5.6 carries out Algorithm 14 to sort the GOs in
the GLO queues and GCO queues to be consistent with the data dependencies of
the original input image. The input vector GOQs is a concatenation of the outputs
of k queues. These are either GLO or GCO queues from child SPUs, child CUs
or from sibling CUs. A multiplexer controlled by the one-hot encoded bit-vector

163

i
i

“dissertation” — 2017/11/5 — 13:24 — page 164 — #164 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Port0

Port1

Port0

Port1

GDT

GMT

INCNT

Port0

Port1

GO Processor

GO Arbitration

Global Label
Management

Coalescing Unit

GO outputs
to CUs

G
L

O
Q

0

G
C

O
Q

0

G
C

O
Q

k
-1

G
L

O
Q

k
-1

...

Recycle

n
e
w

G
L

a
ck

p
bit

p ×
WGL

1bit
+WGL

p
a
re

n
t

le
ft

 s
ib

li
n

g

ri
g

h
t

si
b

li
n

g

GO inputs from SPUs /
 child CUs / sibling CUs

newGL to
SPUs/CUs

Figure 5.5: Block diagram of the architecture of the coalescing unit showing all
sub-units and their connections.

164

i
i

“dissertation” — 2017/11/5 — 13:24 — page 165 — #165 i
i

i
i

i
i

5.3 Coalescing Unit

GO Arbitration

1

blocked

rdBarrier

rrVector

rdack

>

<<

+1

...

...

G
O

o
u

t

GO Processor
ready

='1'....'1'

ena

res

GOQs
2×k×GOs

GO

GO

>

2×k bit

...

...

ARBTAG

2×k bit

1 bit

2×k bit

1 bit

&

2×k bit
0...0

2×k bit

1
bit

...

2×k bit

G
O

va
li

d

GOARBTAG

Figure 5.6: Architecture of the global operations (GO) arbitration at the register-
transfer level to sort the GOs of k queues connected to the input.

stored in the circular shift register rrVector forwards the GOs at input GOQs to
the output GOout, one at a time. The circular 2 × k-bit shift-register rrVector
is initialised with 0x1. To forward the data at the input GOQs sequentially, the
one-hot encoded value in rrVector is continuously shifted and serves as an access
token to the output GOout. This effectively creates a round-robin arbiter. GOvalid
serves as the valid-flag for output GOout. The output vector rdack are the signals
to request the subsequent GOs in each queue attached to the input GOQs. To sort
GOs as described in Algorithm 14, the generation of GOvalid and rdack is of major
importance and is discussed in the following. At first, the arbitration tag (ARBTAG)
of all 2× k GOs at the input are compared to the value of the read barrier stored in
register rdBarrier. The ARBTAGs are assigned the row numbers, a GO is detected
in, as explained in Section 4.4.1. If the arbitration tag of the GO is larger than
rdBarrier, the access to its queue is blocked by asserting the corresponding flag
in the blocked register to ’1’. If all the flags stored in register blocked are ’1’, all
arbitration tags at GOQs are larger than rdBarrier, therefore the value in register
rdBarrier is incremented by one and all the flags in register blocked are reset to ’0’.
This mechanism ensures that all GOs with arbitration tag i are processed before
one GO with arbitration tag i + 1 is processed.

165

i
i

“dissertation” — 2017/11/5 — 13:24 — page 166 — #166 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Control unit

CR Stack

Register file

+1

-1

rf_ena

rf_sel

indeg_sel
from
GMT

from
GDT

from INDEG

to INDEG

Connection to GO arbitration

GO Processor

2× WFV

to GMTWGL

2×
WGL

GO

INDEG

init

GOREG

ready

GO

1 bit

to GDTWFV

◦

Custom ALU

INDEG

INDEG

GLAB0

FV0

FV1

GLAB1

SR0

SR1

PSR0

PSR1

LEAF

SRmin

SRmax

>
>

>
...

...

1
bit

2× WGL

WFV

WFV

Figure 5.7: Architecture of the global operations (GO) processor at the register-
transfer level.

5.3.2 GO Processor Unit

The global operation (GO) processor unit is a light-weight application-specific proces-
sor employed to carry out global operations (GOs). Its architecture is based on the
von Neumann architecture [95] reduced to only the components and instructions nec-
essary for processing GOs. Figure 5.7 shows the architecture at the register-transfer
level. The components introduced in the following are related to von Neumann’s
terminology [95]. The GOREG register is the equivalent of the instruction register
(IR) which is used to store a global operation while it is being processed. As the
GO processor processes the global operations stored in the GLOQs and GCOQs
sequentially, the equivalent of a program counter (PC) is not necessary. The control
unit decodes the GO in GOREG and carries out micro-programs based on Pseu-
docode 15 to Pseudocode 19 which are realised as hard-wired finite state machines
(FSM). The vector of the current state of this FSM is, therefore, the equivalent of
a micro-program counter (MPC). When entering a sub-routine, such as incInDeg
(Algorithm 17), the state to return to is pushed onto the call-return stack (CR stack).

166

i
i

“dissertation” — 2017/11/5 — 13:24 — page 167 — #167 i
i

i
i

i
i

5.3 Coalescing Unit

Since the maximum number of nested sub-routine calls for processing GOs is four,
the (CR stack) has a depth of four, as well. A general algorithmic logic unit (ALU)
is reduced to a parallel custom ALU carrying out four operations: Addition by one,
subtraction by one, comparison of global labels and feature vector (FV) combination.
Addition and subtraction are required to increase and decrease INDEG by one.
The comparison operations are used to determine child vertex and parent vertex
when two global labels are joined (see Pseudocode 19). The operations to combine
feature vectors is dependent on the features to extract, and is realised as a dedicated
combinational logic block. It is marked by ”◦” in the parallel custom ALU in Figure
5.7. To extract the area of connected components, the ◦-operator is implemented as
an addition and to extract the bounding box the ◦-operator is implemented as a
combination of minimum and maximum operation, as described in 3.1.3. All of the
operations in the parallel custom ALU are carried out simultaneously in parallel.

The register file contains two sets of registers: one for global labels and one for
feature vectors. The registers GLAB0, …, SRmax are used to store global labels
when carrying out find operations on GMT. All of them can be used to address the
GMT or the GDT or be used as input data to the GMT. The registers FV0 and
FV1 store feature vectors. Both can be either filled with the output of GDT or with
the feature vector of a combination operation.

167

i
i

“dissertation” — 2017/11/5 — 13:24 — page 168 — #168 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

newGLk-1newGL0

ack0 ackk-1

ack

newGL1

ack1

Global Label Management

GR

...

Recycled
global label

1 bit1 bit1 bit

≥1

WGL

1 bit

slcgrp
lvlgrp

WGIDX
Init
Cnt

WGL WGL WGL

W
G

ID
X

WGIDX

WGIDX

k
 b

it

index

newGLk-2

ackk-2

1 bit WGL

...

Figure 5.8: Architecture of the global label management (GLM) unit at the register-
transfer level.

5.3.3 Global Label Management Unit

The global label management (GLM) unit provides global labels to its child SPUs and
child CUs. Figure 5.8 shows its architecture at the register-transfer level. The global
labels associated with a CU consist of the CU’s lvlgrp, the CU’s slcgrp and the index
to address one entry in each of the CU’s data structures. The global reused queue
GR contains the indices of all unused global labels, which corresponds to all unused
entries of the CU’s data structures. Initially, GR is filled with continuous indices
by the counter init cnt. As child units and sibling units may request global labels
simultaneously, global label are provided via the registers newGL0 to newGLk−1.
There is one newGL register for each of the k child and sibling units. When child
or sibling unit i reads from newGLi, it acknowledges this by asserting a ’1’ to acki,
which is the signal to overwrite newGLi with the global label at the head of the
GR queue. Simultaneous acknowledgements are buffered, as the refilling of newGLi

registers is carried out sequentially. This sequential refilling is possible because SPUs
can at most request a new global label in the first and last column of their image
slice. Since processing one pixel in the SPU corresponds to one clock cycle, the
GLM as described here requires the width WS of an image slice to be greater than
or equal to the number of sibling and child units k of the CU, WS ≥ k.

168

i
i

“dissertation” — 2017/11/5 — 13:24 — page 169 — #169 i
i

i
i

i
i

5.4 Resource Sharing within the PCCA Architecture

Communication link for

Global operation
Pixel stream

Neighbour operation

Image distribution unit

SPU
0

SPU
p-1

SPU
p/2-1

SPU
p/2

... ...

CU

CU CU

... ...

... ...

(a) (b) (c)

Image distribution unit

CU

SPU
0

SPU
p-1

...

...

...

Image distribution unit

SPU
0

SPU
p/4-1

SPU
p/4

SPU
p/2-1

SPU
p/2

SPU
3p/4-1

SPU
3p/4

SPU
p-1

CU CU CU

CU

...

CU

...

Figure 5.9: PCCA architecture utilising different numbers of CUs: in (a) a single
CU is used, in (b) a tree of CUs consisting of 3 CUs is used and in (c) a
tree of CUs consisting of 3 CUs is used.

5.4 Resource Sharing within the PCCA Architecture

“The problem of sharing a set of limited resources between users (customers) in
an optimal way is fundamental” ([93]). Resource sharing in hardware architectures
reuses functional units by time-multiplexing [15]. This can be implemented in
a simple form by adding multiplexers at the inputs and outputs of the shared
resources [107], or in a more advanced form by rearranging and connecting several
functional units [15]. In the PCCA architecture, a small number of coalescing units
process the global operations issued by multiple slice processing units (SPUs). This
is implemented by the multiplexing and arbitration structures within the coalescing
unit, described in Sections 4.4.2 and 5.3.

Figure 5.1 on page 156 shows the arrangement of multiple coalescing units in the
PCCA architecture for scalability. In this section, without loss of generality, the
FPGA implementations of the three PCCA variations shown in Figure 5.9 are
discussed and evaluated:

• PCCA architecture consisting of p SPUs connected to a single CU (Figure
5.9(a)).

• PCCA architecture consisting of p SPUs connected to two CUs of lvlgrp 1 and
one root CU of lvlgrp 0 (Figure 5.9(b)).

• PCCA architecture consisting of p SPUs connected to four CUs of lvlgrp 1 and
one root CU of lvlgrp 0 (Figure 5.9(c)).

169

i
i

“dissertation” — 2017/11/5 — 13:24 — page 170 — #170 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Slice 0 Slice 1 Slice p-1...

...

Slice p-2

Figure 5.10: Worst case image with maximum number of global operations.

Section 5.5 shows the hardware resources required for the implementation on an
FPGA device and the maximum possible clock frequency the PCCA architecture can
be operated with. To determine the maximum throughput which can be processed
in real-time with these hardware architectures, a worst case image pattern is derived
in the following issuing the maximum number of global operations to the coalescing
unit.

5.4.1 Determination of Maximum Throughput for Real-Time
Processing

The PCCA architecture is only able to process the data rate of the pixel stream at
its input if both of its major sub-components, the SPUs and the CUs, are able to
keep up with the data rates at their respective inputs, independent of the values
of the pixel stream. An SPU receives a stream of binary pixels from the IDU and
issues global operations (GOs). These GOs are forwarded to the input of a single
CU or multiple CUs. In Section 3.2.3 it was shown that for an SPU there is a direct
relation between the input image size and the number of required clock cycles to
process the input image. To increase the throughput of the PCCA architecture, the
number of SPUs is increased, where each SPU processes one of the p image slices.
Such an increase in the number of slices also increases the number of slice borders
increasing the maximum number of GOs to be processed by a single CU or multiple
CUs. The rate an SPU issues GOs varies significantly depending on the number of
border edges the pixel graph of the input image contains. For an input image in
which the pixel graph GP does not contain any slice-components, for instance, no
GOs are issued. The throughput of a CU is, therefore, determined by an input image
I for which the p SPUs issue a maximum number of GOs. Such a worst case image
resulting in a maximum number of GOs issued by the SPUs is shown in Figure 5.10
and derived in the following.

170

i
i

“dissertation” — 2017/11/5 — 13:24 — page 171 — #171 i
i

i
i

i
i

5.4 Resource Sharing within the PCCA Architecture

Construction of the Worst Case Image with a Maximum Number of Global Opera-
tions

’To analyse the performance and determine whether real-time requirements can be
met, it is crucial to determine the maximum number of global operations which
can be induced by patterns of binary pixels in the input image. The CUs carry
out global label operations (GLOs) and global component operations (GCOs). The
number of clock cycles the implementation of the PCCA hardware architecture
requires to execute the maximum number of GOs depend on the image width
Wimage and the number of image slices p processed in parallel, i.e. the slice width of
WS = ⌈Wimage/p⌉. For analysis of the maximum number of global label operations,
the properties of GOs are examined at first: A GNLO is the only GO which
associates a new global label with a connected component, a GMOSlice joins the
vertices associated with two global labels and a GCO recycles a global label. The
pattern inducing GMOSlice operations is called GMPatSlice. A maximum of ⌊WS/2⌋
GMPatSlice patterns are possible in one row of an image slice, since each GMOSlice

operation requires two different global labels associated with the pixels of the image
row above. A prerequisite for each of these GMOSlice is that two different global
labels are generated by GNLO operations before, whose vertices are not yet joined
with other vertices of global labels. The maximum number of ⌊WS/2⌋ GMPatSlice

patterns which induce one GMOSlice each, therefore, requires at least ⌈WS/2⌉ global
labels.

The maximum number of ⌊WS/2⌋ GMPatSlice patterns in a single image row can
only occur every WS image rows, as at least ⌊WS/2⌋ GNLO are necessary to generate
the required number of global labels. For this reason, the worst case image with
respect to the maximum number of required global label operations has the following
properties:

1. ⌊WS

2 ⌋ global labels are generated by GNLOs at each slice border before a
merger operation is induced.

2. As soon as ⌈WS/2⌉ global labels are generated via GNLO operations, their
associated vertices are joined using GMOSlice operations in the following row.

3. The image row after the series of GMPatSlice patterns inducing GMOSlice

consist of background pixels, i.e. all connected components are completed.

4. The properties given in 1 through 3 repeat periodically every WS rows of the
image. ’[68]

An image complying with these properties is shown in Figure 5.10. The cross-
hatched pixels show a pattern matching the properties 1 through 3; for the following
benchmark it is, therefore, considered the worst case pattern inducing the maximum
number of global operations. To fulfil property 4 this worst case pattern is placed
every WS image rows, as shown in Figure 5.10 by the hatched pixels. The maximum
number of worst case patterns fit in an image if the slice width, WS , is an integer

171

i
i

“dissertation” — 2017/11/5 — 13:24 — page 172 — #172 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

multiple of the image height H. Then, there are ⌊ H
WS
⌋ worst case patterns, inducing

a total number of Nmax GOs, where

Nmax =
(

(p− 1)× ⌊WS

2 ⌋︸ ︷︷ ︸
GNLOs

+ ⌊W2 ⌋︸ ︷︷ ︸
GMOSlice

+ (p− 2)× ⌊WS

2 − 1⌋+ p︸ ︷︷ ︸
GCOs

)
×

(
⌊ H

WS
⌋
)

︸ ︷︷ ︸
Worst case patterns

.

(5.5)

Evaluation of the Throughput

A PCCA architecture for a specific set of the parameters image width, number of
image slices and number of CUs is called an instantiation of PCCA. An instantiation
of PCCA discussed in Section 5.5 is capable of real-time processing if the following
criterion applies: The time tW C,IDU in which one worst case image is received at
the input of the IDU is less than or equal to the maximum of

• the time to process the received pixel data with the SPUs tW C,SP U , and

• the time to process the issued GOs in one or multiple CUs tW C,CU .

tW C,IDU ≥ max(tW C,SP U , tW C,CU) (5.6)

If the criterion from Equation 5.6 is fulfilled, a true upper bound for the processing
latency is determined and the architecture is able to keep up with the data rate of
the pixel stream at its input, i.e. real-time processing is possible.

For each instantiation of PCCA presented in Section 5.5 the real-time criterion from
Equation 5.6 is verified using a behavioural simulation of the VHDL description.
If the real-time criterion is fulfilled, the throughput TRT of the instantiation is
calculated from the product of the PAR (place&route) frequency fPAR, the number
of SPUs p and the factor 5/6 for stack processing in the SPUs (explained in Section
3.1.2).

TRT = fPAR × p× 5
6 (5.7)

5.5 Experimental Results and Discussion

The diagrams in the following show the number of slice registers, lookup tables
and block-RAM (BRAM) bits used, as well as the maximum clock frequency the
implementation of the PCCA architecture can be operated at. The used device
families, Xilinx Virtex 6 and Xilinx Virtex 7, provide BRAMs with a size of 18 KBit
and 36 KBit, respectively. The diagrams showing the number of required BRAM
bits, therefore, consider the full capacity each used BRAM for the comparison
even if not the entire capacity of a BRAM is used. The lookup tables (LUTs)

172

i
i

“dissertation” — 2017/11/5 — 13:24 — page 173 — #173 i
i

i
i

i
i

5.5 Experimental Results and Discussion

Figure 5.11: These diagrams show the number of used lookup tables (LUTs) in (a),
slice registers in (b) and BRAM Bits in (c) required to implement the
PCCA architecture on a Xilinx Virtex 6 V LX240T − 2 FPGA device
for different image widths W and different numbers of image slices p.
In (d) the maximum place&route (PAR) frequency fPAR is shown.

shown in the diagrams are either used to realise logic functions with up to six
inputs [132,134] or to realise small memories as distributed RAMs [130,133]. The
reported maximum frequency, the maximum place&route (PAR) frequency, is the
maximum frequency reported by Xilinx PlanAhead/Vivado tool-chain after the
place and route step, i.e. it considers the wire delay and the logic delay. The
PAR frequency is the maximum frequency the PCCA architecture can be operated
at. To acquire comparable mapping and timing results, the PlanAhead 14 default
implementation strategy was used on Virtex 6 and the Vivado Implementation
Defaults (2015) implementation strategy was used on Virtex 7 and nothing but the
PCCA architecture was implemented on the FPGA device.

The diagrams in Figure 5.11 show the results of the implementation of the PCCA
architecture utilising a single CU (Figure 5.9(a)) on a Xilinx Virtex 6 VLX240T-2
FPGA device. The image size was varied from 1 Megapixel to 32 Megapixel
distributed over 32 image slices. The required resources are dependent on the width

173

i
i

“dissertation” — 2017/11/5 — 13:24 — page 174 — #174 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Figure 5.12: These diagrams show the number of used LUTs in (a), slice registers
in (b) and BRAM Bits in (c) required by the implementation of the
PCCA architecture with three CUs on a Xilinx Virtex 7 XC7V 585T −2
FPGA device for different image widths W and different numbers of
image slices p. In (d) the maximum place&route (PAR) frequency fPAR

is shown.

W , shown in the legends of these diagrams. Note that for small image width, the
degree of parallelism (number of slices) is limited by the processing capacity of a
single CU. The number of LUTs, slice registers and the number of used BRAM bits
all scale approximately linearly with the number of image slices. Figure 5.11(d)
shows that the PAR frequency is between 120 MHz and 140 MHz independent of
the image width or the number of image slices when PCCA uses a single CU.

The diagrams in Figure 5.12 show the results of the implementation of the PCCA
architecture utilising a tree of three CUs on a Xilinx Virtex 7 XC7v585t-2 FPGA
device. This tree of CUs is arranged as shown in Figure 5.9(b). There is one root CU
of lvlgrp 0 and two CUs of lvlgrp 1. Results are shown for images from 1 Megapixel
to 32 Megapixel which are distributed over up to 32 image slices. The number of
required LUTs and slice registers both increase linearly with the number of image
slices p. The number of BRAM bits depend on the image size and scale linearly

174

i
i

“dissertation” — 2017/11/5 — 13:24 — page 175 — #175 i
i

i
i

i
i

5.5 Experimental Results and Discussion

Figure 5.13: These diagrams show the number of used LUTs in (a), slice registers
in (b) and BRAM Bits in (c) required by the implementation of the
PCCA architecture applying five CUs implemented on a Xilinx Virtex
7 XC7V 585T − 2 FPGA device for different image widths W and
different numbers of image slices p. In (d) the maximum place&route
(PAR) frequency fPAR is shown.

with the number of image slices. Figure 5.11(d) shows that the PAR frequency is
between 118 MHz and 138 MHz independent of the image width or the number of
image slices when PCCA uses a tree of three CUs.

The results of the implementation of the PCCA architecture utilising a tree of five
CUs on a Xilinx Virtex 7 XC7v585t-2 FPGA device are shown in the diagrams in
Figure 5.13 for image sizes from 1 Megapixel to 32 Megapixel distributed over up to
64 image slices. These five CUs are arranged as shown in Figure 5.9(c). There is
one root CU of lvlgrp 0 and four CUs of lvlgrp 1. Both the number of LUTs and
slice registers increase linearly with the number of image slices p. The number of
used BRAM bits depends on the image size and the number of image slices. This
shows that the number of required BRAM bits scale linearly with the number of
image slices. The PAR frequency fPAR for 8 to 32 images slices is between 120 MHz

175

i
i

“dissertation” — 2017/11/5 — 13:24 — page 176 — #176 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Figure 5.14: Throughput for processing the worst case image shown in Figure 5.10
using a single CU (a), three CUs (b) and five CUs (c).

and 140 MHz. For 64 image slices, the PAR frequency fPAR is slightly below 120
MHz.

The diagrams in Figure 5.14 show the maximum throughput for processing a series
of worst case images, as presented in Section 5.4: in (a) when using a single CU, in
(b) for using three CUs and in (c) for using five CUs. Only the instantiations which
fulfil the real-time criterion from Equation 5.6 are shown in the diagrams in Figure
5.14. The processing of global operations for PCCA architectures with multiple
CUs requires more instructions (see Pseudocode 19 and Pseudocode 20). Figure
5.14(a) and 5.14(b) show that using a single or three CUs results in almost the same
throughput, with a maximum of approximately 3.2 Gigapixel/s when dividing the
input image to 32 slices. However, multiple CUs require more complex processing.
For these cases, the PCCA instantiation with a single CU is more efficient, as it
requires fewer hardware resources. However, a single CU limits further acceleration,
as the number of GOs increases with the number of image slices. The diagram in
Figure 5.14(c) shows the maximum throughput of the PCCA instantiations with five
CUs, arranged as shown in Figure 5.9(c), which fulfil the real-time criterion from

176

i
i

“dissertation” — 2017/11/5 — 13:24 — page 177 — #177 i
i

i
i

i
i

5.5 Experimental Results and Discussion

Equation 5.6. A maximum throughput of 6 Gigapixel/s is achieved by the PCCA
instantiation applying 64 SPUs and five CUs.

177

i
i

“dissertation” — 2017/11/5 — 13:24 — page 178 — #178 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

Parallelism Max. frequency Processing Throughput
[P ixels

cycle] fmax [MHz] device [GP ixels
s]

Kumar et al.
[74] 6 100a Xilinx Virtex 5 0.27

Li et al. [80] 4× p 100 ASIC 0.35 µm 0.13b

PCCA prede-
cessor [71] 32 138.8 Xilinx Virtex 6 3.5

PCCA 64 117.2 Xilinx Virtex 7 6.0

Table 5.1: Comparison of throughput with other parallel hardware implementations
which process multiple pixels per clock cycle.

aThis is the frequency the architecture is operated at, as described in [74].
bThis throughput value is extrapolated, as described in Section 5.5.1.

5.5.1 Comparison to Other Parallel Hardware Architectures

Table 5.1 compares the implementation of the architecture of PCCA with the results
published for other CCA or CCL hardware architectures that process multiple pixels
per clock cycle. The column parallelism in Table 5.1 compares the maximum
number of pixels which are processed simultaneously. In the maximum frequency
column the highest clock frequency fmax that the architecture can be operated
with is shown. For PCCA, fmax is equal to fPAR evaluated in Section 5.5. The
throughput column in Table 5.1 shows the maximum throughput reported for an
architecture. As the processing devices used for the implementation of the considered
architectures are realised with a different process technology, from a 0.35 µm on an
ASIC [80] to 28nm on an FPGA, an isolated comparison based on the throughput
is of limited value. In the following, each of the architectures from Table 5.1 is
compared at an architectural level and with respect to the maximum throughput
with the architecture PCCA.

Comparison with Kumar et al. [74]

The CCL architecture in [74] divides the input image into p horizontal image
slices processed in parallel. The reported results are achieved when operating the
architecture at 100 MHz. A maximum clock frequency for the implementation of
the architecture on a Xilinx Virtex 5 FX130T FPGA device is not provided, i.e. the
reported 100 MHz is used for the comparison in Table 5.1. The maximum throughput
is reported for processing a pixel stream with an image size of 800× 600 pixels at
a frame-rate of 580 fps resulting in the maximum throughput of 278 Megapixel/s.
This maximum throughput is achieved when the input image is divided into 6 slices,
i.e. 6 pixels are processed simultaneously.

178

i
i

“dissertation” — 2017/11/5 — 13:24 — page 179 — #179 i
i

i
i

i
i

5.5 Experimental Results and Discussion

As the architecture presented in [74] processes horizontal image slices, an image
stream providing pixels in forward raster scan order, e.g. as provided by most
modern image sensors, must buffer most of the input image before CCL is started.
PCCA, in contrast, does not require such a buffer of the entire input image. In [74],
the first and the last row of each slice of the labelled image have to be buffered
until the end of the image to combine feature vectors of slice-components. PCCA
combines feature vectors of slice-components on the fly without storing several rows
of the labelled image. The instantiation of PCCA applying 64 image slices and
five CUs achieves a throughput which exceeds the throughput reported in [74] by a
factor of more than 20.

Comparison with Lin et al. [80]

The CCL architecture presented in [80] uses a two-pass algorithm which divides
the image into p horizontal image slices processed in parallel. In each of these
slices, four binary pixels are processed simultaneously. The maximum number of
slices that can be processed in parallel is not specified in [80]. As four pixels are
processed simultaneously in every one of the p image slices, the maximum number
of pixels processed simultaneously is given as 4 × p in Table 5.1. To reduce the
required on-chip memory for the parallel CCL architecture, a maximum of 4096
labels are used by the architecture in [80]. However, for two-pass algorithms, worst
case images (with the maximum number of labels) requiring ⌈W ×H

4 ⌉ labels are
usually considered, as every second pixel in every second image row can be a distinct
connected component. It is not reported whether such worst case images can be
processed.

In [80], it is reported that when operated at a frequency of 21 MHz, the presented
architecture is able to process a pixel stream with an image size of 1280× 720 at a
frame-rate of 30 fps (≈28 Megapixel/s) by separating the input image to p = 4 slices.
As a maximum frequency, fmax = 100 MHz is reported. The maximum throughput
of this architecture, shown in Table 5.1 is, therefore, a result of an extrapolation of
these values: 131.65 Megapixel/s. The instantiation of PCCA applying 64 image
slices and five CUs achieves a throughput which exceeds the throughput reported
in [80] by a factor of more than 40.

Comparison with PCCA predecessor [71]

The CCA architecture in [71] is an early version of PCCA. In a similar manner to
PCCA, it divides the image into p vertical slices which are processed simultaneously.
The feature vectors associated with slice-components are combined by a coalescing
unit (CU). A major difference of PCCA compared to [71] is that the latter requires all
labels associated with border pixels to be stored for association of slice-components
with their connected component at the end of the frame. This leads to a significantly
higher amount of on-chip memory required [64]. The CU of the architecture of [71]

179

i
i

“dissertation” — 2017/11/5 — 13:24 — page 180 — #180 i
i

i
i

i
i

5 Hardware Architecture of Parallel SLCCA

starts combining feature vectors associated with slice-components at the end of the
image. Therefore, also the latency to extract feature vectors of connected components
spanning several image slices is significantly longer than for PCCA. The throughput
of PCCA is almost doubled compared to [71] to a maximum of 6 Gigapixel/s. There
are two major reasons for this: The reduction of the on-chip memory resources and
the arranging of several CUs into a CU tree.

5.6 Summary and Contributions of the PCCA Hardware
Architecture to the State of the Art

The PCCA hardware architecture proposed in this chapter is an improvement on
the state of the art on several levels, as pointed out in the following.

• Increased throughput to process high-speed pixel streams: The parallel
SLCCA, PCCA, hardware architecture achieves a high throughput of up
to 6 Gigapixel/s. This allows a stream of ultra-high-definition UHD8k images
to be processed with a frame-rate of up to 169 fps, which is higher than the
maximum specified frame-rate for UHD8k of 120 fps.

• Scalability of hardware resources with throughput: The throughput is in-
creased by using multiple CUs processing up to 64 pixels per clock cycle.

• Hierarchical tree structure of coalescing units: The aforementioned high
throughput is possible by distributing workload to multiple coalescing units.
These coalescing units are connected in a tree structure. Previous parallel CCA
architectures were limited by a single coalescing unit becoming the bottleneck
for a further increase of the throughput.

180

i
i

“dissertation” — 2017/11/5 — 13:24 — page 181 — #181 i
i

i
i

i
i

6 Demonstration of the PCCA
Architecture

The PCCA architecture was demonstrated in mechanical process engineering to
measure the droplet size [70], the droplet size distribution [72], the pulsation frequency
[70], the droplet circularity [69] and to characterise non-spherical objects [69]. In
this chapter, the PCCA hardware architecture (which contains the SLCCA hardware
architecture) is demonstrated in case study to detect droplet collisions in real-time
in an atomisation process, as described in the following.

Atomisation is a sub-field of mechanical process engineering concerned with pro-
ducing droplets by separating liquids with nozzles. In foundational research in
this field, high-speed camera systems are used to explore the impact of different
process parameters to atomisation processes [122]. The image data collected in such
experiments range from several MByte to several TByte for each set of atomisation
parameters. State-of-the-art high-speed camera systems store the captured image
frames to an internal memory which is read out and transferred to a workstation
PC for further evaluation where information of the observed droplets and particles
such as object size, object position, size distribution or shape is extracted. If the
event to examine occurs seldom, a repetitive cycle of image capturing and offline
analysis is required, because the recording time of the high-speed camera system is
limited by the internal memory. To accelerate this process a high-speed Real-time
Process Analysis System is presented in Section 6.1 using the PCCA architecture
from Chapter 5 to analyse all captured image frames in real-time. The extracted
results are evaluated as explained in Section 6.2 and used to trigger the read-out
process of the Real-time Process Analysis System allowing to only send images
to the workstation which match predefined criteria. The case study in Section 6.3
shows the application of this system for monitoring and detecting droplet collision.

181

i
i

“dissertation” — 2017/11/5 — 13:24 — page 182 — #182 i
i

i
i

i
i

6 Demonstration of the PCCA Architecture

6.1 A Real-time Process Analysis System based on FPGA
Hardware Acceleration

’ The Real-time Process Analysis System consists of two main components: a
high-speed image sensor to capture image series at high frame rate and a field-
programmable gate array (FPGA) to process the massive amount of image data
created by the high-speed image sensor. To display and store images and to control
the presented imaging system, it is connected to a workstation PC via a Gigabit
Ethernet connection. The high-speed image sensor used, captures image frames
with a resolution of up to 3 Megapixel at a frame rate between 485 fps and 10,000
fps [96]. All image frames received by the image sensor are written to a memory
inside the Real-time Process Analysis System used as a ring buffer. Additionally, the
feature vectors of all connected components in an image frame are extracted using
the PCCA architecture. The extracted feature vectors describe certain properties
of each object in a captured image, such as size or area. In this chapter, a feature
vector consists of the height and the width of an image object extracted from a
captured image frame. All feature vectors extracted from one image frame usually
require only a few KByte depending on the complexity of the image content. The
pixel data add up to several MByte per image, depending on the image resolution.
The Ethernet interface to the workstation PC, however, is limited to transfer up to
125 MByte/s. Therefore, it is possible to transfer all the extracted feature vectors of
each image frame to the workstation, but not the pixel data of each captured image
frame. To decide which image frames to send, three transfer modes are available:

• Consecutive mode

• Skip mode

• Trigger mode

In consecutive mode writing to the ring buffer is stopped and the image frames
stored in this memory are transferred to the workstation. After these frames are
transferred successfully, image data received from the high-speed image sensor is
stored in the ring buffer, again. In skip mode continuously the latest image frame,
which is captured, is sent to the workstation. All the image frames captured by
the image sensor while transferring this image to the workstation are discarded. In
trigger mode a novel feature-based trigger mechanism identifies image frames which
objects match a predefined pattern. Only these image frames are transferred to the
workstation. ’[69]

’The block diagram in Figure 6.1 depicts the communication links on the FPGA
and to the image sensor, together with the processing units on the FPGA. The
direct chip-to-chip connection of the high-speed image sensor and the FPGA which
consists of one high bandwidth link to transfer the image data as pixel stream
from the image sensor to the FPGA and a control channel to set parameters such

182

i
i

“dissertation” — 2017/11/5 — 13:24 — page 183 — #183 i
i

i
i

i
i

6.1 A Real-time Process Analysis System based on FPGA Hardware Acceleration

Feature-based
trigger

PCCA
hardware

architecture

Image dump
Memory

controller

MicroBlaze
CPU

Ethernet
controller

Image processing

Feature
vectors

Frame
index

Frame index
& start address

Pixel
stream

Control
signals

Image
frames

Fixed
pattern noise

Image
frames

Frame index
& start address

Frame index
& start address

Processed
pixel

stream

Image
sensor

FPGA

AXI Lite

AXI4AXI 4

Image
frames

Parameter setup & exposure control

Pixel
stream

[69]

Figure 6.1: Block diagram of the architecture of the Real-time Process Analysis
System .

frame rate, image resolution or exposure time. The high bandwidth link consists of
16 serial source synchronous LVDS (Low Voltage Differential Signalling) channels
providing sufficient bandwidth for the output data of the high-speed image sensor
of more than 10 Gigapixel/s. The individual image processing units on the FPGA
communicate via an AXI bus [131]. This on-chip communication is illustrated in
the sequence diagram in Figure 6.2. Each step in Figure 6.2 marked by a circled
number is described in the following. The first processing step on the FPGA is
carried out in the image processing unit which receives the high-speed pixel stream
from the image sensor (step 1) and enhances the image stream by removing fixed
pattern noise, which is a constant deviation of the intensity for each pixel individual
to each image sensor introduced by its manufacturing process. After this step the
enhanced frame and its frame index are forwarded to the image dump unit (step 2)
and the PCCA unit (step 3). The image dump unit stores the pixel data of each
frame to the ring buffer by using the memory controller (step 4) and keeps a record
of the starting address in the memory for each frame which is forwarded to the
MicroBlaze CPU (step 5). In skip mode and consecutive mode the MicroBlaze
CPU provides either the frame index and start address of the latest captured image
to Ethernet controller or the frame indices and start addresses of all images stored
in the ring buffer (step 8). The Ethernet controller reads from the ring buffer via
the memory controller and transfers images to the workstation (steps 9 - 11). The
PCCA unit extracts the feature vectors of all image objects from each image frame,
as described in Chapters 4 and 5. Here, the height and the width of each image
object is extracted. The extracted feature vectors are forwarded to the Ethernet

183

i
i

“dissertation” — 2017/11/5 — 13:24 — page 184 — #184 i
i

i
i

i
i

6 Demonstration of the PCCA Architecture

Image proc
unit

Image dump
unit

Memory
controller

PCCA
unit

MicroBlaze
CPU

Feat-based
trigger unit

Ethernet
controller

unit
Pixel

stream
Pixel

stream

Pixel
stream

Frame index
& start address

Pixel
stream

Feature
vectors

Feature
vectorsFrame

index

Frame
index

Feature
vectors

Read
request

Frame index
& start address

Image
frames

1

2

3

4

5

6

7

9

10

Image
frames

8

11

12

13

14

[69]

Figure 6.2: Sequence diagram for communication between image processing compo-
nents of Real-time Process Analysis System . [69]

Controller (13) which transfers all feature vectors to the workstation PC (14) and
to the feature-based trigger unit (12).

In trigger mode only the frame indices of image frames which are identified to contain
feature vectors to match predefined criteria are forwarded to the MicroBlaze CPU,
as shown in Figure 6.2 7 . For the consecutive and skip mode all frame indices
received by the feature-based trigger unit (6) are passed to the MicroBlaze CPU
(7). The feature-based trigger unit compares every feature vector received by the
PCCA unit with a set of previously defined criteria. In Figure 6.3 the architecture
of the feature-based trigger unit is shown on register-transfer level. Every feature
vector containing the width and the height of one image component compares these
values with a minimal width Wmin, a minimal height Hmin and a minimal difference
Dmin which is the absolute value of the difference of Wmin and Hmin. The values
of Wmin and Hmin are used to filter out image objects below a minimum size. The
value of Dmin is an efficient way to implement and approximation of the circularity
C (defined in Section 6.2) without using divisions. It is especially useful to identify
objects which height and width differ from each other. If the feature vector of at
least one image component fulfils all of these three comparisons, a trigger match
is detected. Then the image index of the current frame and the indices of Fcon/2

184

i
i

“dissertation” — 2017/11/5 — 13:24 — page 185 — #185 i
i

i
i

i
i

6.2 Feature Vector Evaluation and Interpretation

Feature
vectors

Feature-based trigger

Current
frame #

AXI-Lite

Frame #
generation

Minimum object width Wmin

Minimum object width Hmin

Minimum Dmin = |Wmin - Hmin|

Consecutive Frames Fcon

Skip frames Fskip

> Wmin

> Hmin

> Dmin

&

Trigger
match

Frame #
for

transfer

[69]

Figure 6.3: Architecture of feature vector trigger unit on register-transfer level. [69]

image frames before and after the current frame are passed on to the MicroBlaze
CPU to transfer the corresponding image frames to the workstation. However,
the bandwidth of the image data transfers resulting from frequent trigger matches
still can exceed the bandwidth of the Ethernet connection. To prevent this, no
image transfer is initiate for the duration of capturing Fskip images. This limits the
maximum output bandwidth by the ratio of Fcon/Fskip. ’[69]

6.2 Feature Vector Evaluation and Interpretation

’ The PCCA architecture provides the feature vectors of connected components
extracted from a binary image. However, taking images from spray and atomisation
processes requires processing on object level rather than on a connected component
level, because one physical object might be detected as several connected components
in the image due to optical and mechanical properties of the measurement system.
These effects are depicted in Figure 6.4 and require further processing which is
explained in the following. The image of an out-of-focus object gets blurred depending
on its distance to the focal plane. After transforming a grayscale image to a binary
black and white image using a global threshold level [39], some of the pixels of the
blurred image are detected as background and some as object pixels. Figure 6.4(a)
shows such a grayscale image and Figure 6.4(b) the corresponding binary image.
This results in detecting several connected components from one physical object.
In Figure 6.4(c) an example is shown where several small connected components
are detected due to the gradient in the grayscale image. Capturing image series of
objects with high velocity requires a low exposure rate in the range of micro-seconds
or below, which makes illumination challenging and hard to establish homogeneous

185

i
i

“dissertation” — 2017/11/5 — 13:24 — page 186 — #186 i
i

i
i

i
i

6 Demonstration of the PCCA Architecture

(a) (b)

(c)

(d)

[69]

Figure 6.4: (a)Grayscale image, (b)Binarised image after global thresholding, (c)Out-
of focus object, (d)Noise due to insufficient illumination. [69]

background illumination. This affects the difference of the intensity level between
object and background pixels which lead to several detected connected components
from one physical object, as well. Figure 6.4(d) shows an example of an image where
insufficient illumination leads to the detection of a large connected component and
noise pixels, both of which would be detected as droplets or particles. The relative
error due to quantization is the higher, the closer the image of an object is to the
pixel size of the image sensor. For this reason only feature vectors of connected
components above a minimum height Hmin and above a minimum width Wmin

create result accurate enough to be considered for further evaluation.

The feature vectors extracted by the PCCA unit consist of the height h and width
w for each connected component. For real-time evaluation each feature vector is
considered and analysed. ’[69]

186

i
i

“dissertation” — 2017/11/5 — 13:24 — page 187 — #187 i
i

i
i

i
i

6.3 Case Study: Detection of Collisions in Atomisation Processes

Droplet generators

Real-time Process Analysis System
with integrated PCCA architecture Workstation PCLight source

Pressure
vessel

[69]

Figure 6.5: Setup of droplet generators and imaging system to induce droplet colli-
sions as proposed in [75]. [69]

6.3 Case Study: Detection of Collisions in Atomisation
Processes

’ The collision behaviour of droplets and the collision outcome for high viscous
polymer solutions are a recent research topic in mechanical process engineering
requiring high-speed imaging [75]. To generate collisions, two droplet generators
are directed to each other. Capturing a collision requires many cycles of image
capturing and offline processing. Using the Real-time Process Analysis System , as
presented in Section 6.1, all captured images can be analysed. In order to evaluate
the detection of droplet collisions using this system, a setup similar to [75] is used
which consists of two droplet generators connected to a liquid supply in a pressure
vessel, a high-power LED light source and the Real-time Process Analysis System
capturing images and transferring them together with the associated measurement
data to a workstation PC. This setup is depicted in Figure 6.5. There droplet
collisions are distinguished in the taken images from the other droplets by their size
and their shape. The droplets resulting from a collision are assumed at least twice
as large in area or width. Based on this assumption the feature-based trigger unit,
proposed in Section 6.1, is used to detect image frames in which a droplet collision
occurs. For this to works the minimum width Wmin and height Hmin is increased
above the size of a spherical droplet. Figure 6.6(a) six image frames of a droplet
collision captured at a rate of 8,000 fps. The second image in Figure 6.6(a) with the
time stamp 1.625 ms complies with the trigger criteria. Therefore, the image frames
before and after this frame are transferred to the to the workstation. ’[69]

187

i
i

“dissertation” — 2017/11/5 — 13:24 — page 188 — #188 i
i

i
i

i
i

6 Demonstration of the PCCA Architecture

’Depending on the angle of incidence and the velocity of two colliding droplets, two
cases can be distinguished, separation and agglomeration. In the case of separation,
the two colliding droplets separate to two or more droplets after the collision, for
agglomeration the droplets merge to one larger droplet. The collision of two droplets
captured for the case of separation is shown in Figure 6.6. The parameters of
the feature-based trigger unit is set to a minimum height of Hmin = 30 pixels, a
minimum width Wmin = 60 pixels and Dmin = 20 pixels. Therefore, image transfer
is only triggered for images containing objects where the width H is at least double
the height H, which was observed in previous experiments comply with the feature
vector of an object in the separation case. As a result three droplet collisions per
minute were detected in average. Agglomeration is shown in the image series in
Figure 6.6(b). To detect this the feature-based trigger unit is set to a minimum
height of Hmin = 45 pixels, a minimum width Wmin = 45 pixels and Dmin = 0
pixels, which filters only for image objects where the width and height exceed the
size of not colliding droplets. In this case an average of three droplet collisions per
minute can be observed, as well. With an off-the-shelf high-speed camera more than
twenty minutes was required to capture a droplet collision, in average. ’[69]

Therefore, it could be demonstrated that the application of the PCCA hardware
architecture (PCCA unit) reduces the time required to capture a series of images
containing seldom events, such as droplet collision. This is achieved by realising
a feature-based triggering mechanism to evaluate the feature vectors which are
extracted by the PCCA unit. For the foundational research in atomisation the
Real-time Process Analysis System has the potential to reduce the time required
for carrying out a single experiment significantly - from tens of minutes to several
seconds.

188

i
i

“dissertation” — 2017/11/5 — 13:24 — page 189 — #189 i
i

i
i

i
i

6.3 Case Study: Detection of Collisions in Atomisation Processes

(a) Separation

0.000 ms 1.625 ms 2.250 ms

3.000 ms 3.875 ms 4.500 ms

(b) Agglomeration

0.000 ms 0.625 ms 1.125 ms

1.250 ms 1.375 ms 3.525 ms

Figure 6.6: Series of high-speed images taken at a frame rate of 8,000 fps show-
ing agglomrtation and separation after a collision of two droplets of
Polyvinylpyrrolidon (PVP) K17-50%. [69]

189

i
i

“dissertation” — 2017/11/5 — 13:24 — page 190 — #190 i
i

i
i

i
i

i
i

“dissertation” — 2017/11/5 — 13:24 — page 191 — #191 i
i

i
i

i
i

7 Conclusion

The contributions of this dissertation to the state of the art are two connected
components analysis hardware architectures capable of processing high-speed image
streams in real time with high frame rates, e.g. 100 to 10, 000 frames per second
and beyond. This throughput makes it also possible to process pixel streams of
ultra-high definition images, which have comparable data rates even for frame rates
below 100 frames per second.

The improvements of these architectures dedicated for reconfigurable hardware are:
high throughput by parallel processing, low latency by single lookup processing in a
single pass, and linear scalability of hardware resources with the throughput. The
linear scalability leads to a resource-efficient architecture.

The proposed single lookup connected components analysis, SLCCA, hardware
architecture is more resource-efficient compared to other state-of-the-art architectures
focusing on the goal of processing a single pixel per clock cycle. Whereas other
architectures have to store the data of an entire image, SLCCA only requires that
the data of one image row is stored due to its single-pass approach. The advanced
union-find algorithm embodied in SLCCA only needs a single lookup per pixel,
whereas other pairs of algorithm and architectures require multiple lookups. The
previously most memory-efficient architecture depended on two data tables to extract
feature vectors. As the design of the SLCCA architecture only requires a single data
table, the amount of on-chip memory for storing feature vectors is halved. The total
amount of on-chip memory of the SLCCA architecture depends on the image size
and the number of features extracted from an image. The memory requirements
for extracting features such as the bounding box grow logarithmically with the
image width. To extract the three features bounding box, area and first order image
moment from images with a resolution of 32 Megapixels (which corresponds to
the size of ultra-high-definition UHD8k images), the amount of on-chip memory is
reduced by 42% compared to the state of the art. Implemented on reconfigurable
hardware, the SLCCA architecture achieves a throughput of up to 124 Megapixel/s.
This throughput allows processing a 2 Megapixel image stream with up to 60 fps,
which corresponds to processing a high-definition HD1080p60 image stream. The
processing latency of the SLCCA architecture is as low as the time needed to process
two image rows, therefore it increases linearly with the image width. As a pixel
is processed in a single clock cycle, a processing latency below 160µs is achieved
even for image streams of 32 Megapixel images. The number of memory access
instructions (MAIs) required to process worst case images was compared between

191

i
i

“dissertation” — 2017/11/5 — 13:24 — page 192 — #192 i
i

i
i

i
i

7 Conclusion

state-of-the-art algorithms and SLCCA. According to these comparisons, SLCCA
requires the least number of MAIs (comparing parallel MAIs) among all evaluated
algorithms. Compared to the algorithm which is second in this comparison with
regards to the number of required MAIs, SLCCA reduces the number of MAIs by a
factor of 7.

The parallel SLCCA, PCCA, hardware architecture achieves a high throughput of
up to 6 Gigapixel/s by dividing the input image into multiple slices, each of which is
processed by an extended SLCCA architecture. This parallelisation allows a stream
of 32 Megapixel images to be processed with a frame-rate of up to 169 fps, which
is higher than the maximum specified frame-rate for ultra-high-definition UHD8k
of 120 fps. The parallel algorithm used for the PCCA architecture is optimised for
reconfigurable hardware as it uses spatial parallelism as well as temporal parallelism
to accelerate processing. The hierarchical union-find algorithm embodied in PCCA
allows simultaneous processing on tree structures of single connected components
which makes parallel coalescing of feature vectors possible. The resources and
on-chip memory bits required by the PCCA architecture scale linearly in the number
of image slices due to the memory-efficient design. The input image stream is
directly processed in a single pass and does not require a frame buffer to store the
entire image, which allows the PCCA architecture to process the received image
stream on the fly. Due to the scalable design of the PCCA architecture consisting of
multiple SLCCA architectures and light-weight application-specific processors, it
can be used for real-time high-speed image processing applications. The evaluated
implementations of the PCCA hardware architecture processing up to 64 pixels per
clock cycle achieve a throughput which is almost double that of the fastest parallel
CCA hardware architecture proposed before (which is a predecessor of the PCCA
architecture).

In a case study, the PCCA architecture, which includes the SLCCA architecture,
is successfully demonstrated to process high-speed image streams captured in an
experimental setup in real time. In this case study, the PCCA hardware architecture
is used to detect droplet collisions in an experimental setup in mechanical process
engineering. Therefore, the PCCA hardware architecture is integrated in a Real-Time
Process Analysis System to extract feature vectors of the droplets in all images
captured by a high-speed image sensor. The high throughput and low latency
of the PCCA architecture is used to realise a feature-based triggering mechanism
facilitating the Real-Time Process Analysis System to only output relevant images:
those of droplet collisions. This feature-based triggering mechanism embedded into
the Real-Time Process Analysis System reduces the time needed for carrying out a
single experiment from tens of minutes to several seconds.

192

i
i

“dissertation” — 2017/11/5 — 13:24 — page 193 — #193 i
i

i
i

i
i

List of Figures

1.1 Definition of input and output data for connected components analysis. 16
1.2 Fields for the application of CCA or CCL. (a) Drive assistance, (b)

license plate recognition, (c) traffic sign recognition, (d) aviation, (e)
surveillance, (f) image segmentation, (g) medical imaging, and (h)
character recognition. 17

2.1 Visualisation of the positions in the sets visited, rightPos, leftPos

in the image. [67] . 33
2.2 A label is assigned to each pixel in raster scan order. In 2.2(a) the

neighbourhood of a pixel at position X = (x, y) is shown. In 2.2(b)
the pixel graph GP of the image in 2.2(a) is shown, and 2.2(c) shows
the corresponding label graph F . [67] 35

2.3 Two examples of images containing stale label l2. A non-root label is
assigned to Lx, because a stale label is in the neighbourhood. [67] . 36

2.4 Example of a bridge pattern labelled l0 with tree piers segments
(black) and two arc segments (shown in grey). [67] 36

2.5 This image shows the neighbourhood labels of current pixel LX ,
LA, . . . , LD, and the neighbourhood labels of the previous pixel,
L−

A, . . . , L−
D. 39

2.6 Merger patterns possible in the labels of pixel neighbourhood Lη. [67] 40
2.7 (a) Example of propagating merger patterns. (b) Example of a chain

pattern consisting of non-propagating merger patterns. (c) Label
graph of image in (a) at the top and Label graph of image in (b) below. 41

2.8 Step 1 : Start of raster scan. Step 2 : New label operation. Step 3 :
Label copy operation. Step 4 : Non-propagating merger operation. 54

2.9 Step 5 : Non-propagating merger operation. Step 6 : Non-
propagating merger operation. Step 7 : First step of flatten(): Flat-
tening of label 3. Step 8 : Flattening of label 4. 55

2.10 Step 9 : Flattening of label 5. Step 10 : Propagating merger operation
(Table contens before assinging Lc = Lmin are shown). Step 11 :
Propagating merger operation (Table contents after assinging Lc =
Lmin are shown). Step 12 : Propagation of the previous LC in the
next neighbourhood. 56

193

i
i

“dissertation” — 2017/11/5 — 13:24 — page 194 — #194 i
i

i
i

i
i

List of Figures

2.11 Step 13 : Neighbourhood before assiging Lc = M [L[C]]. Step 14 :
Neighbourhood after assiging Lc = M [L[C]]. Step 15 : Propagation
of the previous LC in the next neighbourhood. Step 16 : Detection
that LS.head = L[C]. 57

2.12 Step 17 : resolveStaleLabels: Combination of feature from DT [2] and
DT [1]. Step 18 : Read-out of finished feature vector of the finished
connected component. 58

2.13 Memory access instructions on different data structures for random
input images of size 512× 512 of different pixel densities: (a) SLCCA
[65], (b) LSL [76], (c) HCS [48], (e) RQU, (f) CT [17]. Sub-figure (d)
shows the number of patterns and iterations as an aide to understand
sub-figure (c). 62

2.14 Comparison of the number of memory access instructions (MAIs)
for processing random images with different object pixel densities.
MAI s: sum of MAIs. MAI p: number of parallel MAIs. [67] 65

2.15 Comparison of the MAIs for worst case images and reference image
from SIPI database [124]. MAI s: sum of MAIs. MAI p: number of
parallel MAIs. 66

2.16 (a) Chess board pattern, (b) Stair pattern [7] and tree pattern [26]. . 67
2.17 Comparison of scalability of the number of MAIs for increasing image

sizes for (a) chess board pattern, (b) stairs pattern and (c) tree
pattern. The diagram in (d) shows the number of MAIs (for the
algorithms’ respective worst case) normalised to SLCCA: MAIp for
image sizes up to 80 Megapixel. MAI p: number of parallel MAIs. . . 68

3.1 Block diagram of the SLCCA hardware architecture for connected
component analysis. [65] . 75

3.2 The four different groups of image labels. [65] 76
3.3 Architecture of neighbourhood context, row buffer and component

association unit at register-transfer level. [65] 77
3.4 This example image contains patterns inducing a new label 1 , label

copy 2 or merger 3 operation. After the merger pattern at position
3 the merger table entry of 2 points to 1. [65] 78

3.5 Image with chain pattern. By saving the label pair of a merger
operation on the stack S, the content of M (4 → 3 → 2 → 1) is
updated at the end of the image row. Then the content of M is
4→ 1, 3→ 1, 2→ 1. [65] . 79

3.6 Hardware units used for label recycling: the feature vector collection
unit and the label management unit. [65] 82

3.7 Finite state machine for scheduling memory accesses in the feature
vector collection. [65] . 83

3.8 The image shows the read (R), write (W) and Read-before-
invalidate(I) operations for BRAM port 0 and 1 for the last image
row. [65] . 85

194

i
i

“dissertation” — 2017/11/5 — 13:24 — page 195 — #195 i
i

i
i

i
i

List of Figures

3.9 Assigning the labels out of order creates a corrupted merger table. [65] 87
3.10 Two basic examples of stale labels: At position X, the content of

the merger table M is: 3 → 2 → 1. A lookup in the entry of M

associated with label 3 returns label 2, which has been merged with
label 1 earlier in the current row. [65] 90

3.11 Image containing nested connected components with stale labels. [65] 90
3.12 Impossible scenario: Label between bridge piers appears to the right

or left of the bridge. [65] . 92
3.13 All failing attempts to make the two object labels of a merger pattern

stale. [65] . 94
3.14 Block diagram of the on-chip verification environment which success-

fully verified all combinations of a 9 × 5 image against a reference
implementation. [65] . 95

3.15 The bar diagram shows the number of on-chip BRAM bits for the label
assigning in red and the feature vector collection in blue. The hatched
bars on the right show the memory required for the architecture
in [83] and the left bars show the memory required for the SLCCA
architecture for different image sizes. [65] 99

3.16 This diagram shows the number of clock cycles for processing square
images of different sizes with the worst case pattern from Figure
3.18. [65] . 100

3.17 This diagram shows the execution time of the implementation of the
SLCCA architecture operated at 100 MHz for 512× 512 images filled
with random noise for different densities of object pixels. [65] 101

3.18 This figure gives the mean number of processing cycles cmean and the
maximum stack size smax for (a) - (d) which are test images from
USC-SIPI Image Database [124]. (e) Worst case image [7] with the
maximum number of merger patterns. (f) Random noise image with
50% of object pixels as in Figure 3.17. [65] 102

3.19 This diagram shows the guaranteed upper bound for the maximum
processing latency in clock cycles and in µs for the implementation
of the SLCCA architecture when operated at 100 MHz. 103

3.20 This diagram shows the number of lookup tables (LUTs) required by
the FPGA implementation of the SLCCA architecture for different
image sizes and different FPGA families. [65] 104

3.21 This diagram shows the number of slice registers required by the
FPGA implementation of the SLCCA architecture for different image
sizes and different FPGA families. [65] 105

3.22 This diagram shows the number of on-chip BRAM bits required by
the FPGA implementation of the SLCCA architecture for different
image sizes and different FPGA families. [65] 106

3.23 This diagram shows the maximum operation frequency after the
place&route (PAR) of the SLCCA hardware architecture for different
image sizes and different FPGA families. [65] 107

195

i
i

“dissertation” — 2017/11/5 — 13:24 — page 196 — #196 i
i

i
i

i
i

List of Figures

4.1 (a) Original colour image, (b) binary image after segmentation, (c)
extracted feature vectors for each image slices and identification of
connected components spanning several image slices, and (d) feature
vectors of the input image after coalescing. Extracted bounding box
feature vectors are shown in black boxes (width×height in pixel).
Connected components and component segments of connected com-
ponents which span multiple image slices are assigned different colours.114

4.2 This figure shows the graphs resulting from the example image I

divided into three image slices: the pixel graph GP , the local label
graphs FL,0, FL,1, FL,2, the labelled image L, the link table LT and
the global label graph FG. 117

4.3 The input image I is separated into p vertical slices processed as
sub-images. At first, the image is divided into p0 image slices of level
0. These are further separated into image slices with a level > 0. A
red arrow indicates the super-slice of a slice. In this example, p0 = 3,
p1 = 2, p2 = 3, leading to a total of p = 18 image slices. 121

4.4 Different scenarios from HD-UF (Algorithm 6) for joining vertices of
the global label graph FG with the same slcgrp dependent on their
lvlgrp. 124

4.5 Different scenarios from HD-UF (Algorithm 6) for joining vertices
of the global label graph FG associated with different component
segments dependent on their slcgrp. 124

4.6 Interaction of constituents of PCCA. 128
4.7 Neighbourhood positions considered in the first column, last column

and in between. 131
4.8 The global new label pattern detected in the first column of the current

image slice i induces a global new label operation. This associates
the vertices of the component segments labelled Lα and LX with the
vertex of global label newGL. 135

4.9 The GMPatSlice detected in image slice i induces a GMOSlice. This
makes LA a child of LC , and GC a child of GA. The arcs in LT are
removed and a new arc from LC to GA is added. 136

4.10 The GMPatGL detected in the first column of the current image slice
i induces a GMOGL. This associates the vertices of the component
segments labelled LX with Gα. 138

4.11 The GMPatGG detected in the first column of the current image slice
i induces a GMOGG. In this example, GX < Gα, therefore, vertex
Gα becomes a child of GX . 139

4.12 The global patterns in image slice i− 1 and i are detected simulta-
neously. Since SPI i − 1 and i only have a knowledge of the direct
neighbour slices, image segments are associated with multiple global
labels. This is detected and adapted by inducing a GMOSlice operation.140

196

i
i

“dissertation” — 2017/11/5 — 13:24 — page 197 — #197 i
i

i
i

i
i

List of Figures

4.13 These images show the global label graph FG and the local label
graphs FL,i−1, FL,i and FL,i+1 after the global operations induced by
the patterns at positions 1 to 6 from Figure 4.12. The large vertices
G1 to G4 are from the global label graph FG. The small vertices are
of FL,i−1, FL,i and FL,i+1. Dashed arcs are from LT , solid ones from
the global label graph FG. 141

4.14 Example showing the deviation of the order the GOs are stored in
queues to with regards to their data dependencies. 144

5.1 This figure shows the block diagram of the PCCA hardware architec-
ture consisting of one image distribution unit (IDU), p slice processing
units (SPUs) and q levels of coalescing units (CUs) arranged in a tree.
The arrows show the communication links. 156

5.2 Data-path of architecture of the image distribution unit at register-
transfer level for WIDU = 64. 157

5.3 This figure shows the architecture of the slice processing unit with
the capability of detecting and executing global operations. The black
arrows indicate the internal and external connections added to the
architecture from Figure 3.1 to enable multi-slice processing. 158

5.4 Hardware architecture of neighbourhood context at the register-transfer
level. 160

5.5 Block diagram of the architecture of the coalescing unit showing all
sub-units and their connections. 164

5.6 Architecture of the global operations (GO) arbitration at the register-
transfer level to sort the GOs of k queues connected to the input. . . 165

5.7 Architecture of the global operations (GO) processor at the register-
transfer level. 166

5.8 Architecture of the global label management (GLM) unit at the
register-transfer level. 168

5.9 PCCA architecture utilising different numbers of CUs: in (a) a single
CU is used, in (b) a tree of CUs consisting of 3 CUs is used and in
(c) a tree of CUs consisting of 3 CUs is used. 169

5.10 Worst case image with maximum number of global operations. . . . 170
5.11 These diagrams show the number of used lookup tables (LUTs) in (a),

slice registers in (b) and BRAM Bits in (c) required to implement the
PCCA architecture on a Xilinx Virtex 6 V LX240T − 2 FPGA device
for different image widths W and different numbers of image slices p.
In (d) the maximum place&route (PAR) frequency fPAR is shown. . 173

5.12 These diagrams show the number of used LUTs in (a), slice registers
in (b) and BRAM Bits in (c) required by the implementation of the
PCCA architecture with three CUs on a Xilinx Virtex 7 XC7V 585T−
2 FPGA device for different image widths W and different numbers
of image slices p. In (d) the maximum place&route (PAR) frequency
fPAR is shown. 174

197

i
i

“dissertation” — 2017/11/5 — 13:24 — page 198 — #198 i
i

i
i

i
i

List of Figures

5.13 These diagrams show the number of used LUTs in (a), slice registers
in (b) and BRAM Bits in (c) required by the implementation of the
PCCA architecture applying five CUs implemented on a Xilinx Virtex
7 XC7V 585T − 2 FPGA device for different image widths W and
different numbers of image slices p. In (d) the maximum place&route
(PAR) frequency fPAR is shown. 175

5.14 Throughput for processing the worst case image shown in Figure 5.10
using a single CU (a), three CUs (b) and five CUs (c). 176

6.1 Block diagram of the architecture of the Real-time Process Analysis
System . 183

6.2 Sequence diagram for communication between image processing com-
ponents of Real-time Process Analysis System . [69] 184

6.3 Architecture of feature vector trigger unit on register-transfer level. [69]185
6.4 (a)Grayscale image, (b)Binarised image after global thresholding,

(c)Out-of focus object, (d)Noise due to insufficient illumination. [69] 186
6.5 Setup of droplet generators and imaging system to induce droplet

collisions as proposed in [75]. [69] . 187
6.6 Series of high-speed images taken at a frame rate of 8,000 fps showing

agglomrtation and separation after a collision of two droplets of
Polyvinylpyrrolidon (PVP) K17-50%. [69] 189

198

i
i

“dissertation” — 2017/11/5 — 13:24 — page 199 — #199 i
i

i
i

i
i

List of Tables

1.1 This table shows a comparison of properties such as run time (RT)
complexity and the method of evaluating the run time (RT eval meth).
Additionally, the set merging algorithms according to the definitions
from Section 1.5 are identified. Some of them are an optimised variant
(opt) of the algorithm from 1.5, while some use path compression
(pc). [67] . 25

1.2 Comparison of the scan mode, scan order, connectivity and set merging
algorithms of parallel CCA and CCL algorithms used. 28

1.3 Comparison of parallel CCA and CCL algorithms: Maximum number
of threads TR. Speed-up Smax for TR threads/instances compared
to a single one. Parallelism type: spatial (Spat) or temporal (Temp).
Memory type: on-chip memory (ON) or off-chip memory (OFF). . . 29

2.1 Nomenclature used in this chapter. [67] 32
2.2 Description of data structure and combining operator for the Feature

Vectors Bounding Box and Area and First Order Moment. [67] . . . 43
2.3 Comparison of MAIs for worst case patterns. [67] 67

3.1 Nomenclature used in this Chapter. [65] 74
3.2 Correct labelling of image in Figure 3.9 by using augmented labels.

A # in the data table DT indicates that the corresponding entry
contains meaningful feature vector data, while ∅ indicates that the
entry is empty. [65] . 86

3.3 Feature vector extraction for the connected components of Figure
3.11 which contains several stale labels. Augmented labels in M are
represented by a two digit number - the first digit is the row, the
second the index. The valid flags in VF are either (t)rue or (f)alse. [65] 89

3.4 Feature vector extraction for the connected components of Figure
3.11 which contains several stale labels. Augmented labels in M are
represented by a two digit number - the first digit is the row, the
second the index. The valid flags in VF are either (t)rue or (f)alse. [65] 91

3.5 Validation of possible combinations of merger patterns. Don’t cares
in the table are marked by ’-’. [65] 93

3.6 Comparison of the memory bits required for components analysis
for the classical CCL algorithm [102], the single-pass architecture
from [83] and the SLCCA architecture for different image sizes. [65] 96

199

i
i

“dissertation” — 2017/11/5 — 13:24 — page 200 — #200 i
i

i
i

i
i

List of Tables

3.7 Comparison of on-chip BRAM bits required for components analysis
for the classical CCL algorithm, the single-pass architecture from [83]
and the SLCCA architecture for different image sizes. The size of data
table DT corresponds to extracting bounding box and area features
simultaneously. [65] . 98

3.8 Comparison of the algorithm properties of CCA hardware architec-
tures. [65] . 108

3.9 Comparison of several CCA hardware architectures with respect
to hardware resources. Extracted feature vectors: (A) Area, (C)
Component count, (FOM) First-order moment and (BB) Bounding
box. [65] . 108

3.10 Comparison of several CCA hardware architectures with respect to
processing throughput. Extracted feature vectors: (A) Area, (C)
Component count, (FOM) First-order moment and (BB) Bounding
box. [65] . 109

4.1 Nomenclature used in this chapter. 115

5.1 Comparison of throughput with other parallel hardware implementa-
tions which process multiple pixels per clock cycle. 178

200

i
i

“dissertation” — 2017/11/5 — 13:24 — page 201 — #201 i
i

i
i

i
i

Bibliography

[1] B. R. Acharya and P. K. Gantayat, “Recognition of human unusual activ-
ity in surveillance videos,” International Journal of Research and Scientific
Innovation(IJRSI), vol. 2, no. 5, pp. 18 – 23, Jul 2015.

[2] W. Ackermann, “Zum Hilbertschen Aufbau der reellen Zahlen,” Mathematische
Annalen, vol. 99, no. 1, pp. 118–133, 1928.

[3] Stratix V Device Handbook - Volume 1: Device Interfaces and Integration,
Altera Corporation, Jul 2014.

[4] M. Anandhalli and V. P. Baligar, “Improvised approach using background sub-
traction for vehicle detection,” in 2015 IEEE International Advance Computing
Conference (IACC), Jun 2015, pp. 303–308.

[5] K. Appiah, A. Hunter, P. Dickinson, and J. Owens, “A run-length based
connected component algorithm for FPGA implementation,” in International
Conference on Field Programmable Technology. FPT 2008, Dec 2008, pp. 177
–184.

[6] K. Arulmozhi, S. Perumal, P. Sanooj, and K. Nallaperumal, “Application of
top hat transform technique on indian license plate image localization,” in
2012 IEEE International Conference on Computational Intelligence Computing
Research (ICCIC), Dec 2012, pp. 1–4.

[7] D. Bailey and C. Johnston, “Single pass connected components analysis,” in
Proceedings of Image and Vision Computing New Zealand 2007, Dec 2007, pp.
282–287.

[8] D. Bailey, C. Johnston, and N. Ma, “Connected components analysis of
streamed images,” in International Conference on Field Programmable Logic
and Applications (FPL 2008), Sep 2008, pp. 679–682.

[9] B. Bässler, “Implementation and hardware accelerated verification of a con-
nected component architecture,” Master’s thesis, University of Stuttgart, 2014.

[10] D. Burger, J. R. Goodman, and A. Kägi, “Memory bandwidth limitations of
future microprocessors,” SIGARCH Comput. Archit. News, vol. 24, no. 2, pp.
78–89, May 1996.

[11] L. Cabaret and L. Lacassagne, “What is the world’s fastest connected com-
ponent labeling algorithm?” in International Workshop on Signal Processing
Systems (SIPS). IEEE, 2014, pp. 1–6.

201

i
i

“dissertation” — 2017/11/5 — 13:24 — page 202 — #202 i
i

i
i

i
i

Bibliography

[12] L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel light speed labeling: An
efficient connected component labeling algorithm for multi-core processors,”
in International Conference on Image Processing (ICIP), 2015.

[13] L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel light speed labeling:
an efficient connected component algorithm for labeling and analysis on
multi-core processors,” Journal of Real-Time Image Processing, pp. 1–24,
2016.

[14] L. Cabaret, L. Lacassagne, and L. Oudni, “A review of world’s fastest connected
component labeling algorithms: Speed and energy estimation,” in Conference
on Design & Architectures for Signal & Image Processing (DASIP), 2014, pp.
1–6.

[15] J. M. P. Cardoso and P. C. Diniz, Compilation Techniques for Reconfigurable
Architectures. Boston, MA: Springer US, 2009, ch. Mapping and Execution
Optimizations, pp. 109–154.

[16] S.-C. Chan, S. Zhang, J.-F. Wu, H.-J. Tan, J. Ni, and Y. Hung, “On the
hardware/software design and implementation of a high definition multiview
video surveillance system,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 3, no. 2, pp. 248–262, 2013.

[17] F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Computer Vision and Image
Understanding, vol. 93, no. 2, pp. 206 – 220, 2004.

[18] G. Chartrand, Introductory Graph Theory, ser. Dover Books on Mathematics
Series. Dover, 1977.

[19] G. Chartrand, L. Lesniak, and P. Zhang, Graphs & Digraphs, Fifth Edition,
5th ed. Chapman & Hall/CRC, 2010.

[20] C.-W. Chen, Y.-T. Wu, S.-Y. Tseng, and W.-S. Wang, “Parallelization of
connected-component labeling on tile64 many-core platform,” Journal of
Signal Processing Systems, vol. 75, no. 2, pp. 169–183, 2014.

[21] D. Chen, J.-M. Odobez, and H. Bourlard, “Text detection and recognition in
images and video frames,” Pattern Recognition, vol. 37, no. 3, pp. 595 – 608,
2004.

[22] Y.-L. Chen, “Nighttime vehicle light detection on a moving vehicle using image
segmentation and analysis techniques,” WSEAS Transactions Computers,
vol. 8, no. 3, pp. 506–515, 2009.

[23] Y.-L. Chen, C.-T. Lin, C.-J. Fan, C.-M. Hsieh, and B.-F. Wu, “Vision-based
nighttime vehicle detection and range estimation for driver assistance,” in
IEEE International Conference on Systems, Man and Cybernetics. SMC 2008.
IEEE, 2008, pp. 2988–2993.

202

i
i

“dissertation” — 2017/11/5 — 13:24 — page 203 — #203 i
i

i
i

i
i

Bibliography

[24] Y. Chen, A. Abushakra, and J. Lee, “Vision-based horizon detection and
target tracking for UAVs,” in Advances in Visual Computing. Springer, 2011,
pp. 310–319.

[25] N. Chiba and X. Liu, “Character extraction by integrating color into edge-based
methods,” in 2015 14th IAPR International Conference on Machine Vision
Applications (MVA), May 2015, pp. 73–76.

[26] J. De Bock and W. Philips, “Fast and memory efficient 2-D connected com-
ponents using linked lists of line segments,” IEEE Transactions on Image
Processing, vol. 19, no. 12, pp. 3222–3231, Dec 2010.

[27] L. Di Stefano and A. Bulgarelli, “A simple and efficient connected components
labeling algorithm,” in Proceedings International Conference on Image Analysis
and Processing, 1999, pp. 322–327.

[28] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to
connected-component labeling for arbitrary image representations,” Journal
of the ACM, vol. 39, no. 2, pp. 253–280, Apr 1992.

[29] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate
recognition (alpr): A state-of-the-art review,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 23, no. 2, pp. 311–325, Feb 2013.

[30] S. Ebrahimi and V. Y. Mariano, “Image quality improvement in kidney stone
detection on computed tomography images,” Journal of Image and Graphics,
vol. 3, no. 1, 2015.

[31] P. G. Emma, W. R. Reohr, and M. Meterelliyoz, “Rethinking refresh: Increas-
ing availability and reducing power in DRAM for cache applications,” IEEE
Micro, vol. 28, no. 6, pp. 47–56, 2008.

[32] S. Estable, J. Schick, F. Stein, R. Janssen, R. Ott, W. Ritter, and Y.-J. Zheng,
“A real-time traffic sign recognition system,” in Proceedings of the Intelligent
Vehicles ’94 Symposium, Oct 1994, pp. 213–218.

[33] J. F. Eusse, R. Leupers, G. Ascheid, P. Sudowe, B. Leibe, and T. Sadasue,
“A flexible asip architecture for connected components labeling in embedded
vision applications,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, Mar 2014, pp. 1–6.

[34] A. Fossati, P. Schönmann, and P. Fua, “Real-time vehicle tracking for driving
assistance,” Machine Vision and Applications, vol. 22, no. 2, pp. 439–448,
2011.

[35] U. Franke, D. Gavrila, S. Görzig, F. Lindner, F. Paetzold, and C. Wöhler,
“Autonomous driving goes downtown,” IEEE Intelligent systems, no. 6, pp.
40–48, 1998.

203

i
i

“dissertation” — 2017/11/5 — 13:24 — page 204 — #204 i
i

i
i

i
i

Bibliography

[36] E. Frew, T. McGee, Z. Kim, X. Xiao, S. Jackson, M. Morimoto, S. Rathinam,
J. Padial, and R. Sengupta, “Vision-based road-following using a small au-
tonomous aircraft,” in Aerospace Conference, 2004. Proceedings. 2004 IEEE,
vol. 5. IEEE, 2004, pp. 3006–3015.

[37] Y. Fu, X. Chen, and H. Gao, “A new connected component analysis algo-
rithm based on max-tree,” in 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing. IEEE, 2009, pp. 843–844.

[38] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of pedestrian
detection for advanced driver assistance systems,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1239–1258, 2010.

[39] R. C. Gonzalez and R. E. Woods, “Thresholding,” Digital Image Processing
(3rd Edition), pp. 738–744, 2006.

[40] C. Grana, D. Borghesani, P. Santinelli, and R. Cucchiara, “High performance
connected components labeling on FPGA,” in Workshop on Database and
Expert Systems Applications (DEXA), Sep 2010, pp. 221 –225.

[41] D.-Y. Gu, C.-F. Zhu, J. Guo, S.-X. Li, and H.-X. Chang, “Vision-aided UAV
navigation using GIS data,” in IEEE International Conference on Vehicular
Electronics and Safety (ICVES). IEEE, 2010, pp. 78–82.

[42] S. Gupta, D. Palsetia, M. Ali Patwary, A. Agrawal, and A. Choudhary,
“A new parallel algorithm for two-pass connected component labeling,” in
Parallel Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International, May 2014, pp. 1355–1362.

[43] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache architectures
and coherency protocols on x86-64 multicore SMP systems,” in Proceedings of
the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 42. New York, NY, USA: ACM, 2009, pp. 413–422.

[44] R. Haralick, “Some neighborhood operators,” in Real-Time Parallel Computing.
Springer, 1981, pp. 11–35.

[45] R. M. Haralick and L. G. Shapiro, “Glossary of computer vision terms,”
Pattern Recognition, vol. 24, no. 1, pp. 69 – 93, 1991.

[46] E. S. I. Harba, “Computer-aided diagnosis for lung diseases based on artificial
intelligence: A review to comparison of two-ways: Bp training and pso opti-
mization,” International Journal of Computer Science and Mobile Computing,
2015.

[47] F. Havet, Lectures notes on ”Combinatorial Optimization - Algorithms for
telecommunications ”, Apr 2016, ch. 3. Complexity of algorithms, pp. 29–44.

[48] L. He and Y. Chao, “A very fast algorithm for simultaneously performing
connected-component labeling and Euler number computing,” IEEE Transac-
tions on Image Processing, vol. 24, no. 9, pp. 2725–2735, Sep 2015.

204

i
i

“dissertation” — 2017/11/5 — 13:24 — page 205 — #205 i
i

i
i

i
i

Bibliography

[49] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling algorithm,”
IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 749–756, May
2008.

[50] L. He, Y. Chao, and K. Suzuki, “A run-based one-and-a-half-scan connected-
component labeling algorithm,” International Journal of Pattern Recognition
and Artificial intelligence, vol. 24, no. 04, pp. 557–579, 2010.

[51] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component labeling,”
Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, Sep 2009.

[52] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A
Quantitative Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011, ch. 3, p. 179.

[53] J. Hopcroft and J. Ullman, “Set merging algorithms,” SIAM Journal on
Computing, vol. 2, no. 4, pp. 294–303, 1973.

[54] Q. Hu, G. Qian, and W. L. Nowinski, “Fast connected-component labelling
in three-dimensional binary images based on iterative recursion,” Computer
Vision and Image Understanding, vol. 99, no. 3, pp. 414 – 434, 2005.

[55] Recommendation ITU-R BT.2020-1 Parameter values for ultra-high defini-
tion television systems for production and international programme exchange,
International Telecommunication Union, Jun 2014.

[56] M. Isenburg and J. Shewchuk, “Streaming connected component computation
for trillion voxel images,” in Workshop on Massive Data Algorithmics, 2009.

[57] Y. Ito and K. Nakano, “Low-latency connected component labeling using an
FPGA,” International Journal of Foundations of Computer Science, vol. 21,
no. 03, pp. 405–425, 2010.

[58] C. Johnston and D. Bailey, “FPGA implementation of a single pass connected
components algorithm,” in Electronic Design, Test and Applications, 2008.
DELTA 2008. 4th IEEE International Symposium on, Jan 2008, pp. 228 –231.

[59] V. G. Kanas, E. I. Zacharaki, C. Davatzikos, K. N. Sgarbas, and
V. Megalooikonomou, “A low cost approach for brain tumor segmentation
based on intensity modeling and 3d random walker,” Biomedical Signal
Processing and Control, vol. 22, pp. 19 – 30, 2015.

[60] S. Kaur and S. Kaur, “An efficient approach for number plate extraction from
vehicles image under image processing,” International Journal of Computer
Science and Information Technologies, vol. 5, pp. 2954–2959, 2014.

[61] C. G. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe, and D. M. Gavrila, “Active
pedestrian safety by automatic braking and evasive steering,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1292–1304,
2011.

205

i
i

“dissertation” — 2017/11/5 — 13:24 — page 206 — #206 i
i

i
i

i
i

Bibliography

[62] V. Khanna, P. Gupta, and C. Hwang, “Finding connected components in
digital images by aggressive reuse of labels,” Image and Vision Computing,
vol. 20, no. 8, pp. 557 – 568, 2002.

[63] J. Kim and T. Chen, “A VLSI architecture for video-object segmentation,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 1, pp. 83–96, 2003.

[64] M. J. Klaiber, D. G. Bailey, S. Ahmed, Y. Baroud, and S. Simon, “©2013.
Reprinted, with permission from IEEE. A high-throughput FPGA architecture
for parallel connected components analysis based on label reuse,” in 2013
International Conference on Field-Programmable Technology (FPT), Dec 2013,
pp. 302–305.

[65] M. J. Klaiber, D. G. Bailey, Y. O. Baroud, and S. Simon, “©2015 Reprinted,
with permission from IEEE. A resource-efficient hardware architecture for
connected components analysis,” IEEE Transactions on Circuits and Systems
for Video Technology, pp. 1–16, 2015.

[66] M. J. Klaiber, D. G. Bailey, Y. O. Baroud, and S. Simon, “A resource-efficient
hardware architecture for connected components analysis,” IEEE Transactions
on Circuits and Systems for Video Technology, pp. 1334–1349, 2015.

[67] M. J. Klaiber, D. G. Bailey, and S. Simon, “A linear single-pass single look-up
connected components analysis algorithm,” Submitted to IEEE Transactions
on Image Processing, 2016.

[68] M. J. Klaiber, D. G. Bailey, and S. Simon, “©2016 Springer. A single cycle
parallel multi-slice connected components analysis hardware architecture,”
Journal of Real-Time Image Processing, pp. 1–11, 2016.

[69] M. J. Klaiber, J. Guhathakurta, W. Li, Z. Wang, A. Lampa, H. Li, S. Simon,
M. Sommerfeld, and U. Fritsching, “A high-speed process monitoring system
to detect and analyze filaments and droplet collisions in spray processes in
real-time,” in ICLASS 2015, 13th Triennial International Conference on Liquid
Atomization and Spray Systems, Aug 2015, pp. 1–10.

[70] M. J. Klaiber, A. Kleinhans, P. Stähle, V. Gaukel, and S. Simon, “A real-time
process analysis system for the pulsation detection and measurement in spray
processes,” in ILASS – Europe 2014, 26th Annual Conference on Liquid
Atomization and Spray Systems, Sep 2014, pp. 1–4.

[71] M. J. Klaiber, L. Rockstroh, Z. Wang, Y. Baroud, and S. Simon, “A memory-
efficient parallel single pass architecture for connected component labeling
of streamed images,” in International Conference on Field-Programmable
Technology (FPT), Dec 2012, pp. 159–165.

[72] M. J. Klaiber, Z. Wang, and S. Simon, Process-Spray: Functional Particles pro-
duced in Spray Processes. Springer International Publishing AG, Cham, 2016,

206

i
i

“dissertation” — 2017/11/5 — 13:24 — page 207 — #207 i
i

i
i

i
i

Bibliography

ch. A Real-Time Process Analysis System for the Simultaneous Acquisition of
Spray Characteristics, pp. 265–305.

[73] D. Knuth, The Art of Computer Programming: Fundamental algorithms, ser.
The Art of Computer Programming. Addison-Wesley, 2008.

[74] V. S. Kumar, K. Irick, A. A. Maashri, and V. Narayanan, “A scalable
bandwidth-aware architecture for connected component labeling,” in VLSI 2010
Annual Symposium, ser. Lecture Notes in Electrical Engineering, N. Voros,
A. Mukherjee, N. Sklavos, K. Masselos, and M. Huebner, Eds. Springer
Netherlands, 2011, vol. 105, pp. 133–149.

[75] M. Kuschel and M. Sommerfeld, “Investigation of droplet collisions for
solutions with different solids content,” Experiments in Fluids, vol. 54, no. 2,
2013.

[76] L. Lacassagne and B. Zavidovique, “Light speed labeling: efficient connected
component labeling on RISC architectures,” Journal of Real-Time Image
Processing, vol. 6, no. 2, pp. 117–135, Jun 2011.

[77] J. Lasheras, E. Villermaux, and E. Hopfinger, “Break-up and atomization of a
round water jet by a high-speed annular air jet,” Journal of Fluid Mechanics,
vol. 357, pp. 351–379, 1998.

[78] M. C. Le, “Lane detection and classification for assistive navigation of the visu-
ally impaired,” Ph.D. dissertation, School of Civil, Mining and Environmental
Engineering - Faculty of Engineering and Information Sciences, University of
Wollongong, 2015.

[79] C.-F. Lin, C.-S. Chen, W.-J. Hwang, C.-Y. Chen, C.-H. Hwang, and C.-L.
Chang, “Novel outline features for pedestrian detection system with thermal
images,” Pattern Recognition, 2015.

[80] C.-Y. Lin, S.-Y. Li, and T.-H. Tsai, “A scalable parallel hardware architecture
for connected component labeling,” in 17th IEEE International Conference on
Image Processing (ICIP), Sep 2010, pp. 3753 –3756.

[81] D. Llorens, A. Marzal, V. Palazon, and J. Vilar, “Car license plates extraction
and recognition based on connected components analysis and hmm decoding,”
in Pattern Recognition and Image Analysis, ser. Lecture Notes in Computer
Science, J. Marques, N. Perez de la Blanca, and P. Pina, Eds. Springer
Berlin Heidelberg, 2005, vol. 3522, pp. 571–578.

[82] R. Lumia, L. Shapiro, and O. Zuniga, “A new connected components algo-
rithm for virtual memory computers,” Computer Vision, Graphics, and Image
Processing, vol. 22, no. 2, pp. 287 – 300, 1983.

[83] N. Ma, D. Bailey, and C. Johnston, “Optimised single pass connected compo-
nents analysis,” in International Conference on Field Programmable Technology.
FPT 2008, Dec 2008, pp. 185 –192.

207

i
i

“dissertation” — 2017/11/5 — 13:24 — page 208 — #208 i
i

i
i

i
i

Bibliography

[84] R. Madhavan and T. Hong, “Robust detection and recognition of buildings
in urban environments from ladar data,” in Information Theory, 2004. ISIT
2004. Proceedings. International Symposium on. IEEE, 2004, pp. 39–44.

[85] D. Makinson, Sets, logic and maths for computing. Springer, 2008.

[86] M. Manohar and H. Ramapriyan, “Connected component labeling of binary
images on a mesh connected massively parallel processor,” Computer Vision,
Graphics, and Image Processing, vol. 45, no. 2, pp. 133 – 149, 1989.

[87] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented
natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics,” in Proceedings of the 8th International
Conference on Computer Vision, vol. 2, Jul 2001, pp. 416–423.

[88] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic
Toolbox. Springer, 2008, ch. 2, p. 52.

[89] U. Meis, M. Oberlander, and W. Ritter, “Reinforcing the reliability of pedes-
trian detection in far-infrared sensing,” in IEEE Intelligent Vehicles Symposium.
IEEE, 2004, pp. 779–783.

[90] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks,
ser. Princeton series in applied mathematics. Princeton (N.J.): Princeton
University Press, 2010.

[91] D. Metcalf, R. Kikinis, C. Guttmann, L. Vaina, and F. Jolesz, “4d connected
component labelling applied to quantitative analysis of ms lesion temporal
development,” in 14th Annual International Conference of the IEEEEngineering
in Medicine and Biology Society, vol. 3, Oct 1992, pp. 945–946.

[92] H. M. Moftah, A. E. Hassanien, and M. Shoman, “3d brain tumor segmentation
scheme using k-mean clustering and connected component labeling algorithms,”
in 2010 10th International Conference on Intelligent Systems Design and
Applications (ISDA). IEEE, 2010, pp. 320–324.

[93] D. Müller, “Fast resource sharing in vlsi routing,” Ph.D. dissertation, PhD
thesis, University of Bonn, 2009.

[94] F. Nabi, H. Yousefi, and H. Soltanian-Zadeh, “Major temporal arcade separa-
tion in angiography images of retina using the hough transform and connected
components,” in 2015 23rd Iranian Conference on Electrical Engineering
(ICEE), May 2015, pp. 145–150.

[95] J. Neumann, The Origins of Digital Computers: Selected Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1982, ch. First Draft of a Report on
the EDVAC, pp. 383–392.

[96] ON Semiconductor, LUPA3000: 3 MegaPixel High Speed CMOS Sensor, Jun
2012.

208

i
i

“dissertation” — 2017/11/5 — 13:24 — page 209 — #209 i
i

i
i

i
i

Bibliography

[97] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[98] S. Palaniappan and S. Natarajan, “Parallel realization of single pass connected
component analysis on a multi-core architecture,” in 2014 International Con-
ference on Communications and Signal Processing (ICCSP), Apr 2014, pp.
582–586.

[99] F. N. Paravecino and D. Kaeli, “Accelerated connected component labeling
using cuda framework,” in Computer Vision and Graphics, ser. Lecture
Notes in Computer Science, L. Chmielewski, R. Kozera, B.-S. Shin, and
K. Wojciechowski, Eds. Springer International Publishing, 2014, vol. 8671,
pp. 502–509.

[100] M. Patwary, P. Refsnes, and F. Manne, “Multi-core spanning forest algorithms
using the disjoint-set data structure,” in IEEE 26th International Parallel
Distributed Processing Symposium (IPDPS), May 2012, pp. 827–835.

[101] S. Rathinam, P. Almeida, Z. Kim, S. Jackson, A. Tinka, W. Grossman, and
R. Sengupta, “Autonomous searching and tracking of a river using an UAV,”
in American Control Conference, 2007. ACC’07. IEEE, 2007, pp. 359–364.

[102] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture pro-
cessing,” Journal of the ACM, vol. 13, pp. 471–494, Oct 1966.

[103] A. Saha, D. D. Roy, T. Alam, and K. Deb, “Automated road lane detection
for intelligent vehicles,” Global Journal of Computer Science and Technology,
vol. 12, no. 6, 2012.

[104] A. S. Saif, A. S. Prabuwono, and Z. R. Mahayuddin, “Real time vision
based object detection from UAV aerial images: a conceptual framework,”
in Intelligent Robotics Systems: Inspiring the NEXT. Springer, 2013, pp.
265–274.

[105] H. Samet and M. Tamminen, “Efficient component labeling of images of
arbitrary dimension represented by linear bintrees,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 579–586, Jul
1988.

[106] H. Samet and M. Tamminen, “An improved approach to connected component
labeling of images,” in International Conference on Computer Vision And
Pattern Recognition, 1986, pp. 312–318.

[107] B. C. Schafer, “Enabling high-level synthesis resource sharing design space
exploration in fpgas through automatic internal bitwidth adjustments,” 2015.

[108] G. Schewior, H. Flatt, C. Dolar, C. Banz, and H. Blume, “A hardware
accelerated configurable asip architecture for embedded real-time video-based
driver assistance applications,” in 2011 International Conference on Embedded
Computer Systems (SAMOS). IEEE, 2011, pp. 209–216.

209

i
i

“dissertation” — 2017/11/5 — 13:24 — page 210 — #210 i
i

i
i

i
i

Bibliography

[109] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Addison-Wesley Professional,
2011.

[110] R. Seidel and M. Sharir, “Top-down analysis of path compression,” SIAM
Journal on Computing, vol. 34, no. 3, pp. 515–525, Mar 2005.

[111] S. M. Selkow, “One-pass complexity of digital picture properties,” Journal of
the ACM, vol. 19, no. 2, pp. 283–295, Apr 1972.

[112] L. G. Shapiro, “Connected component labeling and adjacency graph con-
struction,” Machine Intelligence and Pattern Recognition, vol. 19, pp. 1–30,
1996.

[113] O. Stava and B. Bedrich, “Connected component labeling in CUDA,” GPU
Computing Gems - Emerald Edition, pp. 569 – 581, 2011.

[114] K. Suzuki, “Computerized detection of lesions in diagnostic images,” in
Machine Learning in Radiation Oncology, I. El Naqa, R. Li, and M. J.
Murphy, Eds. Springer International Publishing, 2015, pp. 101–131.

[115] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component
labeling based on sequential local operations,” Computer Vision and Image
Understanding, vol. 89, no. 1, pp. 1–23, Jan 2003.

[116] K. Takahashi and N. Sawada, “Apparatus and method for labeling connected
component in a three-dimensional image,” Feb 1991, US Patent 4,991,224.

[117] R. Tarjan, Data Structures and Network Algorithms, ser. CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics, 1983.

[118] R. Tarjan and J. van Leeuwen, “Worst-case analysis of set union algorithms,”
Journal of the ACM, vol. Volume 31 Issue 2, pp. 245 – 281, 1984.

[119] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
Journal of the ACM, vol. 22, no. 2, pp. 215–225, Apr 1975.

[120] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of
hardware designs,” Design Test of Computers, IEEE, vol. 18, no. 4, pp. 36–45,
Jul 2001.

[121] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative per-
formance analysis of Intel (r) xeon phi (tm), GPU, and CPU: A case study
from microscopy image analysis,” in IEEE 28th International Symposium on
Parallel and Distributed Processing, May 2014, pp. 1063–1072.

[122] S. Thoroddsen, T. Etoh, and K. Takehara, “High-speed imaging of drops and
bubbles,” Annu. Rev. Fluid Mech., vol. 40, pp. 257–285, 2008.

[123] T.-H. Tsai and C.-H. Chang, “Design for an intelligent surveillance system based
on system-on-a-programmable-chip platform,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2015, pp. 2049–2052.

210

i
i

“dissertation” — 2017/11/5 — 13:24 — page 211 — #211 i
i

i
i

i
i

Bibliography

[124] USC-SIPI, “USC-SIPI image database,” http://sipi.usc.edu/database/.

[125] K. Wu and E. Otoo, “A simpler proof of the average case complexity of
union-find with path compression,” Technical Report LBNL-57527, Lawrence
Berkeley National Laboratory, 2005.

[126] K. Wu, E. Otoo, and K. Suzuki, “Two strategies to speed up connected
component labeling algorithms,” Lawrence Berkeley National Laboratory, 2008.

[127] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-component
labeling algorithms,” Pattern Analysis and Applications, vol. 12, no. 2, pp.
117–135, 2009.

[128] Xilinx, Inc., San Jose, CA, USA, Spartan-6 FPGA Configurable Logic Block
User Guide UG384 (v1.1), Feb 2010.

[129] Xilinx, Inc., San Jose, CA, USA, “7 series FPGAs memory interface solutions
- user guide UG586,” Mar 2011.

[130] Xilinx, Inc., San Jose, CA, USA, Xilinx User Guide - Virtex-6 FPGA Memory
Resources UG363 (v1.6), Apr 2011.

[131] Xilinx, Inc., San Jose, CA, USA, AXI Reference Guide, Xilinx UG761 (v14.3),
Nov 2012.

[132] Xilinx, Inc., San Jose, CA, USA, “Virtex-6 family overview DS150,” Jan 2012.

[133] Xilinx, Inc., San Jose, CA, USA, “7 series FPGAs memory resources user
guide - UG473 (v1.11),” Nov 2014.

[134] Xilinx, Inc., San Jose, CA, USA, 7 Series FPGAs Overview DS180 (v1.16),
Oct 2014.

[135] Z. Xu and C. Bao, “Detection for deformed and sheltered circular traffic signs,”
in MATEC Web of Conferences, vol. 22. EDP Sciences, 2015, p. 03021.

[136] Z. Yu, L. Claesen, Y. Pan, A. Motten, Y. Wang, and X. Yan, “Soc processor
for real-time object labeling in life camera streams with low line level latency,”
in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on,
Jun 2014, pp. 345–348.

[137] C. Yuan, Z. Liu, and Y. Zhang, “UAV-based forest fire detection and tracking
using image processing techniques,” in 2015 International Conference on
Unmanned Aircraft Systems (ICUAS), Jun 2015, pp. 639–643.

[138] F. Zhao, H. Z. Lu, and Z. yong Zhang, “Real-time single-pass connected
components analysis algorithm,” EURASIP J. Image and Video Processing,
vol. 2013, p. 21, 2013.

211

i
i

“dissertation” — 2017/11/5 — 13:24 — page 212 — #212 i
i

i
i

i
i

	1 Introduction
	1.1 Definitions of Connected Components Analysis and Connected Components Labelling
	1.2 Image Processing Systems Applying Connected Components Analysis
	1.3 Citations and Quotations
	1.4 Graph and Digraph Notation and Definition
	1.5 Set Merging Algorithms
	1.6 Review on Classical CCL and Special Case CCL Algorithms for Image Processing
	1.7 Evaluation and Categorisation of State-of-the-Art Sequential CCA and CCL Algorithms for Image Processing
	1.8 Evaluation and Categorisation of State-of-the-Art Parallel CCA and CCL Algorithms

	2 SLCCA - The Single-Lookup Connected Components Analysis Algorithm
	2.1 General Definitions
	2.2 Relation of Union-Find to SLCCA: The Set Merging Algorithm used by SLCCA
	2.3 Algorithmic Description of SLCCA
	2.3.1 Neighbourhood Patterns and Operations
	2.3.2 Flattening Trees in the Union-Find Structure
	2.3.3 Feature Vector Collection
	2.3.4 Non-root Label Selection
	2.3.5 Label Reuse

	2.4 Pseudocode of SLCCA
	2.4.1 Forward Raster Scan
	2.4.2 UpdateNeighbourhood
	2.4.3 UpdateDataStructures
	2.4.4 Flatten
	2.4.5 ResolveStaleLabels
	2.4.6 FindFinishedComponents
	2.4.7 Step-by-step Example of SLCCA

	2.5 Experimental Results and Discussion
	2.5.1 An Analysis of the Memory Access Instructions of SLCCA and State-of-the-Art Algorithms
	2.5.2 Comparison of the Memory Access Instructions of SLCCA to State-of-the-Art Algorithms

	2.6 Summary and Contributions of the SLCCA Algorithm to the State of the Art

	3 Hardware Architecture of SLCCA
	3.1 Design of the Hardware Architecture
	3.1.1 Neighbourhood Context and Row Buffer
	3.1.2 Label Selection and Image Component Association
	3.1.3 Label Recycling and Feature Vector Collection
	3.1.4 Stale labels
	3.1.5 Validation of the architecture
	3.1.6 Validation of the implementation

	3.2 Experimental Results and Discussion
	3.2.1 Memory Requirements
	3.2.2 Benchmark
	3.2.3 Hardware Resources
	3.2.4 Comparison to Other Hardware Architectures

	3.3 Summary and Contributions of the SLCCA Hardware Architecture to the State of the Art

	4 PCCA - The Parallel SLCCA Algorithm
	4.1 Parallel Labelling Process in PCCA
	4.2 Parallel Union-find Operations in PCCA
	4.3 Global Operations
	4.4 Partitioning of the PCCA Algorithm
	4.4.1 Slice Processing Instance
	4.4.2 Coalescing Instance

	4.5 Summary and Contributions of the PCCA Algorithm to the State of the Art

	5 Hardware Architecture of Parallel SLCCA
	5.1 Image Distribution Unit
	5.2 Slice Processing Unit
	5.2.1 Local and Global Component Association Units
	5.2.2 Feature Vector Collection Unit
	5.2.3 Neighbourhood Context Unit
	5.2.4 Label Selection Unit

	5.3 Coalescing Unit
	5.3.1 Arbitration of Global Operations
	5.3.2 GO Processor Unit
	5.3.3 Global Label Management Unit

	5.4 Resource Sharing within the PCCA Architecture
	5.4.1 Determination of Maximum Throughput for Real-Time Processing

	5.5 Experimental Results and Discussion
	5.5.1 Comparison to Other Parallel Hardware Architectures

	5.6 Summary and Contributions of the PCCA Hardware Architecture to the State of the Art

	6 Demonstration of the PCCA Architecture
	6.1 A Real-time Process Analysis System based on FPGA Hardware Acceleration
	6.2 Feature Vector Evaluation and Interpretation
	6.3 Case Study: Detection of Collisions in Atomisation Processes

	7 Conclusion
	Bibliography

