
Adaptive Dynamic On-Chip Memory Management
for FPGA-based Reconfigurable Architectures

Ghada Dessouky∗, Michael J. Klaiber∗, Donald G. Bailey†, Sven Simon∗
∗Institute for Parallel and Distributed Systems, University of Stuttgart, Germany

Email: michael.klaiber@ipvs.uni-stuttgart.de, ghada.dessouky@gmail.com
†School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

Abstract—In this paper, an adaptive architecture for dynamic
management and allocation of on-chip FPGA Block Random
Access Memory (BRAM) resources is presented. This facilitates
the dynamic sharing of valuable and scarce on-chip memory
among several processing elements (PEs), according to their
dynamic run-time memory requirements. Different real-time
applications are becoming increasingly dynamic which leads to
unexpected and variable memory footprints, and static allocation
of the worst-case memory requirements would result in costly
overheads and inefficient memory utilization. The proposed
scalable BRAM memory management architecture adaptively
manages these dynamic memory requirements and balances the
buffer memory over several PEs to reduce the total memory
required, compared to the worst-case memory footprint for all
PEs. The run-time adaptive system allocates BRAM to each PE
sufficiently fast enough as required and utilized. In a case study,
a significant improvement in BRAM utilization with limited over-
head has been achieved due to the adaptive memory management
architecture. The proposed system supports different BRAM
types and configurations, and automated dynamic allocation and
deallocation of BRAM resources, and is therefore well suited for
the dynamic memory footprints of FPGA-based reconfigurable
architectures.

I. INTRODUCTION AND MOTIVATION

With the increasing complexity and performance require-
ments of real-time embedded systems and the advances in
FPGA technology, came the advent of multi-processor archi-
tectures and, more recently, of reconfigurable computing. Re-
configurable computing exploits the reconfiguration capabili-
ties of FPGA devices to reconfigure the resources on the FPGA
to modify and adapt the functionality of these resources to a
specific application or computation that needs to be performed
[1]. More recently, dynamic partial reconfiguration (DPR) of
FPGAs provided the possibility to specify and constrain certain
partitions on an FPGA such that they can execute different
tasks at different points in time without consuming additional
area.

One main challenge of dynamic reconfigurable computing
is the efficient assignment of resources to different partitions,
such as the scarce and valuable block random access memory
(BRAM), which is often a limiting factor in the design of
complex embedded systems [2] [3]. Modules designed to
occupy the same physical partition on FPGA can only utilize
the on-chip BRAM resources within this partition, which
are often not sufficient for memory-intense applications. One
workaround to resolve the limited on-chip memory dilemma
is the utilization of the more abundant off-chip memory [2]
[3]. However, this imposes many physical design constraints
on the FPGA-based implementation, and reduces its potential
for flexibility and reconfigurability. Moreover, local on-chip
memory is almost always the preferred memory choice for

real-time applications, since it is the lowest latency (one
clock cycle), fastest, and highest bandwidth memory solution
available [3]. Hence, it becomes necessary to design the sys-
tem using maximum worst-case memory footprint estimates,
but such static memory allocation is inefficient and would
impose excessive area and power consumption overheads [4].
Dynamic memory management is needed to enhance the gains
of reconfigurable computing by meeting the dynamic context-
dependent memory requirements of embedded reconfigurable
applications and to avoid costly static memory allocations at
design-time.

One such application is the tracking of moving objects
in real-time. The run-time memory required depends on the
number of objects entering the monitored region, and the
number of features stored for these objects. Another example,
is the connected component labeling (CCL) algorithm used to
identify objects in typically binarized images [5], in which the
run-time memory footprint depends on the number of objects
identified and the features to be computed.

Another potential scenario is runtime reconfigurability:
different PEs designed to occupy the same FPGA partition
may have very different memory footprints. Static allocation
of worst-case memory requirements would result in poor
utilization of on-chip memory.

Hence, in this work, we propose a Dynamic On-chip
Memory Management Unit (DOMMU) which is customized
to target the run-time dynamic management of on-chip BRAM
to parallel FPGA-based PEs, according to their dynamic run-
time memory footprints. DOMMU is designed with flexi-
ble user-configurability and scalability. It supports automated
BRAM (de)allocation, which ensures that memory manage-
ment remains transparent to the PEs. Support for sharing
BRAM between PEs is also integrated, and can be extended to
support additional BRAM configuration types. The function-
ality of DOMMU and the resulting improvement in BRAM
utilization is demonstrated using an application case study,
targetting the Xilinx Virtex-5 LX110T FPGA, although the
design is easily ported to other device families.

The paper is organized as follows. An overview and
comparison with related work is given in Section II. The archi-
tecture of DOMMU and its features are described in Section
III, followed by more detailed structure and functionality in
Section IV. In Section V, the testing of DOMMU and the
performance and resource requirements are discussed. Finally,
Section VI concludes the paper.

II. RELATED WORK

Dynamic memory (or heap) management is extensively
researched owing to its significance in software, and more
recently in hardware architectures and embedded systems.

The survey in [6] examines in depth different general-purpose
dynamic memory management policies and their complexities.
Many general-purpose traditional memory allocators realize
static memory allocation methodologies that perform well
for most general cases, but fail to perform optimally in
embedded applications, that are characterized by dynamic and
unexpected memory footprint changes at run-time [4] [6].
Allocating memory statically to cover the worst-case due to the
variations in memory footprint imposes costly overheads and
poor utilization of on-chip memory, which is the motivation
to investigate dynamic memory management for embedded
systems [6], and to thoroughly study the timing performance
of dynamic memory allocation algorithms to investigate their
usability for real-time systems [7].

General-purpose dynamic allocation mechanisms such as
those presented in [6] cannot be directly implemented for
embedded systems since they impose costly overheads for
the limited resources of embedded systems. Hence, different
specific-purpose dynamic memory management solutions have
been proposed in literature, such as a real-time operating
system for embedded systems proposed in [8] which offers
customized dynamic memory management depending on the
running applications. Further customization is presented in
[9] which proposes a methodology to define custom dynamic
memory management solutions with the desired performance
for embedded systems, by exploring the dynamic memory
management design space in order to reduce the amount of
memory access involved.

Dynamic memory management for embedded systems can
be realized in hardware [10] [11] [12] [13] [14], as well
as in software [8] [9] [4]. Software-only dynamic memory
management has been extensively researched [6] [9] [15]
and established as the more flexible and adaptive solution.
However, it has lower performance and higher latency than
hardware realizations. In [10], a hardware System-on-a-Chip
Dynamic Memory Management Unit (SoCDMMU) is pre-
sented, which manages the (de)allocation of global on-chip
memory within a two-level memory management hierarchy in
a fast and deterministic manner. SoCDMMU allocates global
pages of fixed number of equally sized blocks to the processors
and the (de)allocation of memory assigned to each processor
is managed locally. SoCDMMU is restricted to a memory
granularity of equal fixed-sized memory blocks. Moreover, no
methodology is provided for automatic or predictive BRAM
(de)allocation. In [14], a general-purpose hardware memory
management unit is proposed for NoC architectures which
is restricted to managing shared memory only and with
(de)allocation occurring at granularity of complete pages.
Microcoded dynamic memory management services for Multi-
Processor System-on-Chip (MPSoC) platforms which are cus-
tomized and application-specific are proposed in [13], but
targeting distributed on-chip shared memory. Similar to our
design, is the adaptive memory core presented in [12], which
is a multi-client memory core, designed for deployment in
a MPSoC to facilitate access to external off-chip memory
via dynamic mapping of the address space for the different
processors. The core is scalable to support up to 16 processors
and is restricted to support (de)allocation based on fixed
number and fixed size memory blocks. Moreover, it targets the
dynamic memory management of abundant off-chip memory
resources.

As concluded from a review of the literature and as re-

ported in [4], dedicated hardware solutions provide the higher
performance, but with poor flexibility and poor support for
reuse and run-time adaptivity. Our work attempts to provide
both high performance and run-time adaptivity, by extending
the aforementioned established solutions of dynamic memory
management to offer a customized high-performance dynamic
memory management architecture, which (de)allocates on-chip
FPGA BRAM to several PEs.

III. DESIGN GOALS AND FUNCTIONALITY OF DOMMU

For DOMMU to dynamically manage on-chip memory
allocation of PEs in reconfigurable computing, it has to meet
the following requirements:

• Dynamic Memory (De)Allocation

Static memory allocation architectures often force PEs to
reserve enough BRAM to cover worst-case requirements and
to resort to off-chip memory for more. In typical cases,
significantly less than worst-case memory is required, and the
worst-case buffer can be provided for other PEs while unused.
This dynamic sharing and allocation of memory can reduce
the total memory required at run-time and improve BRAM
utilization. However, dynamic allocation should be guaranteed
to occur faster than the first access of the PE to this BRAM
to ensure that memory requirements are served with quality.

• Transparency

An important design goal is to decouple the internal function-
ality of DOMMU from the PEs using it. Therefore, DOMMU’s
interface as well as its behaviour and timing performance has
to be identical to that of traditional BRAM access. This is
achieved by BRAM virtual address mapping which is trans-
parent to the PEs, and maintaining a single clock cycle latency
for BRAM access. Moreover, it is necessary to provide all
the PEs with access to their allocated BRAM simultaneously
via independent dedicated channels without any bandwidth
sharing. To provide a PE transparently with memory when
it is needed, automated dynamic BRAM (de)allocation is
realized which should be enabled or disabled for different
PEs independently at run-time, according to the application
requirements.

• Scalability

DOMMU has to be designed with user-configured parameters
to make it reusable and scalable in terms of the number
of memory ports, number of BRAMs managed, their types
and configurations. Moreover, the required hardware resources
have to scale well with increasing numbers of memory ports
and managed BRAMs. Additionally, the design has to pro-
vide integrated support for shared BRAM for communication
between PEs through dual-port BRAM access, and should
be extensible to integrate application-specific BRAM type
templates.

• Conservation of an optimal point in design space

Since DOMMU replaces static allocation of BRAMs, the de-
sign space exploration [16] for the architecture using DOMMU
has to consider bandwidth, latency and hardware resources.
Independent dedicated channels between PEs and their associ-
ated BRAMs assure a latency of one clock cycle for memory

accesses. In order not to outweigh the gains of DOMMU, the
hardware resources have to be kept minimal. This preserves
the point in the design space of the original architecture, while
enabling efficient utilization of BRAM resources by dynamic
management.

A. Proposed Design

PE 1

INTERCONNECTION
NETWORK

FPGA

BRAM
1

BRAM
2

BRAM
3

BRAM
N

BRAM
N-1

BRAM
N-2

PE 2 PE 3
PE

M-2
PE

M-1
PE
M

DOMMU

DOMMU LOGIC

Fig. 1: Illustration of the general system overview of DOMMU.

In Figure 1, each PE is assigned one or more memory ports,
by the user at design-time. Thesse memory ports interface with
DOMMU for BRAM (de)allocation and access. M memory
ports share access to N BRAM elements via an interconnection
network as shown in Figure 1.

To manage this dynamic sharing while keeping the BRAM
management transparent to the PEs, it must keep track of the
BRAM configurations (width and depth) available “in stock”,
the BRAM assigned to each PE, the configuration details of
this BRAM, how often the BRAM is accessed, and how much
more or less BRAM is required by each PE at any point
in time. To keep the BRAM management transparent to the
PEs, an address mapping scheme ensures correct PE-BRAM
association.

B. BRAM Organization and Address Translation Scheme

offset

logical address

memory
port 0

memory
port 1

memory
port 2

memory
port M-2

memory
port M-1

memory
port M

page table

PAGE 0

PAGE 1

PAGE 2

PAGE M-2

PAGE M-1

PAGE M

page 1

BRAM
0

BRAM
1

BRAM
2

BRAM
X

bram elements

BRAM 0

BRAM 1

BRAM 2

BRAM N-2

BRAM N-1

BRAM N

bram PID offset

physical address

memory ports of
processing elements

bram PID 1

bram LID

Fig. 2: Logical to physical address translation scheme of
DOMMU.

The set of BRAM elements shown in Figure 2 and their
physical configurations is the BRAM physical address space,
which is realized by initializing a subset of the available
BRAM resources on the device in different configurations
(width X depth) depending on the design requirements.

To provide transparency to the PEs, the BRAM elements

are also arranged in a logical address space, in the form
of logical pages. Concepts of logical addressing and paging
are borrowed from software memory management of oper-
ating systems [17], and employed similarly in the design of
DOMMU. Each memory port is assigned a logical page which
can be assigned up to X BRAM elements as shown in Figure
2. The BRAM elements are assigned a Logical Identification
(LID) according to their order of assignment within the logical
page. These LIDs are assigned at run-time independently of
the Physical ID (PIDs) of the BRAM elements managed by
DOMMU. Each memory port should “know” its logical page,
its word width and depth. Each PE accesses its allocated
BRAM by communicating the logical addresses via its memory
port(s) to the DOMMU. The logical address is mapped to the
physical address (BRAM PID and offset within the BRAM
element) to access the correct data word.

DOMMU interfaces with the PEs via the memory ports
shown in Figure 2, which introduces a degree of freedom to
assign more than one memory port for each PE at design-time.

IV. ARCHITECTURE OF DOMMU

0 memory
ports

PE interface

memory
ports

PE interface

PE 0

PE 1

M
memory
ports

PE interface

PE Z

1

2

M-1

DOMMU

port
manager 0

port
manager 1

port
manager 2

port
manager

M-1

port
manager M

arbiter

 trans-
lator

access
controller

XBAR
controller

XBAR

BRAM
elements

space

Black /Dotted: REQ/ACK control, Orange/Dashed: BRAM RD/WR data, Green/Solid: BRAM RD/WR control

to PE memory
ports directly

Fig. 3: Block diagram of DOMMU architecture.

A detailed block diagram of DOMMU and its components
is illustrated in Figure 3.
Crossbar (XBAR) switch - The PE↔BRAM interconnection
network required in DOMMU must allow all PEs to be
physically able to access all the configured BRAM elements.
Bi-directional communication is required to support both read
and write access, as well as non-blocking switching to ensure
that multiple simultaneous PE ↔ BRAM interconnections
can always be established. The crossbar switch satisfies these
requirements.

The original idea was to dynamically reconfigure the
FPGA routing resources to implement the crossbar switch,
or implementing the crossbar multiplexers using LUTs and
reconfiguring their configuration contents by bitstream ma-
nipulation via internal dynamic partial reconfiguration of the
corresponding FPGA configuration frames [18], in order to
control the multiplexed output, as suggested by Hoo et al. in
[19]. However, for ease of initial implementation and proof-
of-concept, the crossbar is implemented in this work using
regular multiplexers. It is realized using two crossbars: a uni-
directional (PE → BRAM) crossbar for writing to BRAM,
and a bi-directional (PE ↔ BRAM) crossbar for reading

PE 1

BRAM
1

PE 2

PE 3

PE 4

BRAM
2

BRAM
3

BRAM
4

BRAM
5

BRAM
6

BRAM
7

BRAM
8

address multiplexers read data multiplexers

Fig. 4: Implementation of bi-directional 4 x 8 read crossbar
using multiplexers.

from BRAM. Figure 4 presents a multiplexer-based 4x8 bi-
directional crossbar switch. A crossbar controller takes the
translated physical addresses required for all the memory
ports and assigns the crossbar select and enable lines, to
provide transparent BRAM access with single clock cycle
latency. The crossbar switch is realized such that each PE
can simultaneously read from and/or write to single-port or
dual-port BRAM. Inter-PE communication is configured by
mapping separate ports of a dual-port BRAM page to different
PEs.

Address translator (BRAT) - The PEs communicate
with the BRAMs by logical addresses. Hence, each memory
port is assigned a BRAM Address Translator (BRAT), which
performs the functionality described in Figure 2.

When a read or write access request is received through a
memory port (orange/dashed path in Figure 3), BRAT maps
this memory port to the associated logical page by quering an
array which maps each port to its corresponding logical page
and the allowed access credentials (RD, WR, or RD/WR) of
this memory port to this page. If the address is out-of-bounds
or involves illegal access, the incoming address is rejected, and
the PE is flagged for requesting an illegal access. This feature
enforces implicit memory access rights to ensure that each PE
can only access its assigned memory.

BRAT also receives incoming control requests from a
controller to update its stored arrays for new (de)allocations.
ACK/NACK message reporting the status and details of each
request is returned to the controller. Errors such as a full
logical page that cannot be allocated more BRAM or an empty
page that cannot be deallocated from are handled by returning
the corresponding NACK message back to the controller.
In general, all incoming control requests are acknowledged
with ACK/NACK response messages communicated to the
controller which indicate the details of status of the request.
BRAT also keeps track of the logical page associated with each
memory port, and the details of each logical page, such as its
access credentials, word width, allowed maximum and actual
depth. All details about the BRAM elements assigned to each
page are also stored to ensure correct PE-BRAM association,
correct logical-to-physical address mapping, and detection of
illegal accesses.

Access controller (BRAC) - The BRAM Access Con-

troller, or BRAC, is the controller component of DOMMU,
which receives and handles BRAM (de)allocation requests
(black/dotted path in Figure 3). It is realized as a five-state
finite state machine controller. A PE can issue request to
(de)allocate more than one BRAM element at a time to reduce
control traffic, but only one element can be processed at a time
by BRAC. Hence, BRAC receives the request, interprets it, and
keeps track of the number of elements to process. It processes
the (de)allocation of each element, one after the other, until
the request has been fully processed, and a final ACK/NACK
response message is returned to the PE to indicate the status
and relevant details of the request (such as the number of
BRAM elements allocated if it was not possible to serve the
full request).

In order for BRAC to perform its functionality correctly, it
keeps track of the complete BRAM elements space, and stores
arrays of the details and counters of the unallocated, allocated,
and deallocated (were once allocated) BRAM elements of each
implemented BRAM configuration type. When a PE requests
a certain BRAM configuration, BRAC queries the available
BRAM elements of that specific configuration, and assigns
BRAM elements to the corresponding logical page. When a
BRAM element is (de)allocated from/to a logical page, BRAC
updates its arrays and communicates these changes to the cor-
responding BRAT by a (N)ACK message. Illegal (de)allocation
requests are handled by being denied and sending back the
corresponding NACK message to the requesting PE.

As shown in Figure 3, a single shared channel and re-
sources are dedicated for processing BRAM control requests.
Requests can be issued by multiple PEs simultaneously, which
requires an arbiter to schedule oustanding requests. Note that
BRAM access occurs with single clock cycle latency since
all PEs have dedicated BRAM read/write channels, and no
sharing or arbitration is involved. However, control requests
from multiple PEs cannot be processed simultaneously since
this would result in conflicts in BRAM (de)allocations and
arrays. Therefore, a single BRAM control channel is shared
by all.

Arbiter - Arbitration using adaptive, dynamic and user-
configurable priorities was implemented, since this was most
suited for dynamic reconfigurable systems. The scheduling
priorities associated with these PEs are dynamic and can
change at run-time. Every memory port is assigned a priority,
which is one of the three levels: low, medium or high, and
this priority level is assigned as static or dynamic either at
design-time or run-time. A static priority maintains its default
value throughout operation, unless it gets re-assigned explicitly
by the PE. At every clock cycle, all incoming requests from
all memory ports are read and arbitration selects the request
to serve. If the waiting time of a request exceeds a user-
configured threshold and if the priority of that port is dynamic,
then the corresponding priority is upgraded to the next level.
The dynamic priority of a memory port also gets downgraded
if its pending request gets served, and its request waiting time
is smaller than a user-configured threshold. Configurable and
dynamic priority arbitration is suitable for real-time embedded
systems in which some running applications are more time-
critical than others, and scheduling priorities can be adjusted
accordingly.

Hierarchical arbitration is implemented in which higher pri-
ority is always reserved for all allocation requests followed by
a lower priority for all deallocation requests because allocation

requests are more critical to the PE. Within every level of
hierarchy, the assigned priorities are examined to schedule the
highest priority request to be first served. Latency overhead due
to arbitration is unavoidable yet critical, since it is a significant
factor in the latency incurred in serving memory allocation
requests, which is crucial for scheduling memory requests
associated with real-time applications. Arbitration latency has
a determinstic maximum which is a function of the number
of PE memory ports configured and the maximum number
of BRAM elements that can be requested at one time by
any memory port. This latency should be considered when
scheduling BRAM allocation requests, and is guaranteed, when
dynamic automated BRAM allocation is enabled, to remain
below the first access of the PE to the requested BRAM.
This overhead can be reduced by minimizing the arbiter logic
and dynamism. Moreover, more aggressive pipelining can be
attempted in order to serve multiple BRAM requests at one
time, although in the current architecture design this would
result in inconsistencies in shared data arrays.

Memory port manager - Each PE memory port that
interfaces with DOMMU consists of a dedicated BRAM access
port and a control port for (de)allocation control requests.
The BRAM access port constitutes of two independent ports.
Data can be read from or written to one or both of them
simultaneously which enables access of single-port BRAM
as well as dual-port BRAM for double the bandwidth, and
supports inter-PE communication, which is often required in
real-time image processing applications. If a PE requires more
BRAM bandwidth, additional memory ports can be configured
for it. The control port is assigned a memory port manager
which matches the requested BRAM type, word width, and
number of words to the closest BRAM configuration (width
X depth) available. This ensures that the internal BRAM
management and configuration details remain transparent to
the PE. Since this mapping is embedded and time-critical,
and has to occur with minimal impact on timing performance
and area overhead, this limits the maximum complexity of
the methodology and logic implemented. There is no optimal
resolution to this mapping problem due to the different opti-
mization factors that can be considered such as speed, power
or area utilization [20]. The methodology implemented in this
work selects the match that minimizes in the number of BRAM
elements assigned.

Automated dynamic (de)allocation of BRAM is one of the
distinguishing features of DOMMU. This allows additional
BRAM to be requested for allocation automatically when the
assigned BRAM for the memory port is close to running out.
This is indicated when the number of BRAM addresses that
get written to, increase beyond a user-configured threshold.
If the assigned BRAM remains idle and unaccessed for a
number of clock cycles greater than a user-configured thresh-
old, the BRAM elements (but one element, which requires
explicit deallocation) get deallocated automatically. Dynamic
(de)allocation can be enabled or disabled by each port manager
at run-time according to the application requirements. This
feature is based upon several simplifying assumptions that
every incoming read/write access is a valid one, that every
incoming write access is associated with a new BRAM address,
and that when the number of idle cycles exceeds a certain
threshold, that this BRAM is not required by the memory port
anymore, and should be deallocated.

The currently supported control requests a PE can issue

Component Register LUT

Utilization [%] Utilization[%]

Port Manager 0% 1%

Arbiter 0% <1%

BRAC 1% 2%

BRAT <1% 2%

XBAR Controller <1% <1%

XBAR Switch 0% 9%

Total 3% 17%

TABLE I: Resource requirements of individual components of
DOMMU for ports number = 8, max bram per page = 4,
bram number = 40 on Virtex-5 FPGA.

via a memory port to its memory port manager are: allocating
a new single-port or shared BRAM logical page, deallocating
a BRAM logical page, or a requested number of words from
a logical page, or assigning a new priority to the concerned
memory port. The parameters required for each request depend
on the request code issued, and each request is acknowledged
by a response message which indicates the details of the
granted/denied request.

V. RESULTS AND DISCUSSION

The main parameters of DOMMU that are configured by
the user at design-time are the number of PEs, the number of
memory ports which will interface with DOMMU, the number
of memory ports assigned for each PE, the number of BRAMs,
their configurations and types, and the maximum number of
BRAM elements that can be assigned to one logical page.
Results for different DOMMU configurations are presented in
this section.

A. Resource Requirements

The resource requirements for DOMMU depend on the
configuration of its parameters. Table I presents the fraction
of resources required by each component of DOMMU within
the total resources utilization for a configuration of 8 memory
ports and 40 BRAM elements. LUT utilization is 17% with
the highest 9% dedicated for the crossbar switch, owing to the
number of multiplexers required to implement the switch. All
percentages in this subsection are in reference to the FPGA
Xilinx Virtex-5 LX110T.

Figures 5 and 6 illustrate the scalability of DOMMU
and the impact of increasing the number of memory ports
or BRAM elements on the resource utilization. In Figure 5,
LUT utilization increases to 35% for DOMMU configuration
with 16 PE memory ports and 40 BRAM elements. A lin-
ear growth in required resources can be observed from the
plot, which indicates that the number of PE memory ports
configured should be carefully selected with consideration
for cost in resource consumption. Figure 6 also shows how
LUT utilization increases from 5% to 15% as the number of
BRAM elements configured increases from 5 to 100 with a
fixed number of 4 PE memory ports. Increases in resource
utilization are due to the increasing number of crosspoints
(ports number × bram number) in the crossbar switch, as
well as increasing volume of logic and arrays required to
handle more memory ports or BRAM elements. However,

2 4 8 12 16

Number of PE Memory Ports

0

10

20

30

40

50

U
ti

liz
a
ti

o
n
 [

%
]

6

9

17

27

35

1
2

3
4

5

Resource Requirements [%]

LUTs[%]
Registers[%]

Fig. 5: Resource utilization for DOMMU for different number
of memory ports and bram number = 40 on Virtex-5 FPGA.

0 10 20 30 40 50 60 70 80 90 100

Number of BRAM Elements Configured

4

6

8

10

12

14

16

LU
T
S
 U

ti
liz

a
ti

o
n
 [

%
]

5

6

7

8

9

10

11

12

13

14

15

Resource Requirements [%]

Fig. 6: Resource utilization for DOMMU for different number
of BRAM elements and ports number = 4 on Virtex-5 FPGA.

results indicate that altering the number of BRAM elements
has a smaller impact than altering the number of PE memory
ports configured on the LUT utilization of DOMMU. Such
is expected since each memory port configured requires a
corresponding memory port manager.

DOMMU can be operated at up to 140 MHz on the
Virtex-5 device, which varies according to the configuration.
Table II shows how the timing performance of DOMMU varies
according to the number of memory ports and BRAM elements
managed. As these increase, the maximum operating frequency
decreases. Again, the number of PE memory ports has a greater

Number of Max Number of Max

PE Memory Ports Freq BRAM Elements Freq

bram number = 40 [MHz] ports number = 4 [MHz]

2 140 5 135

4 111 20 123

8 89 40 111

12 75 70 98

16 59 100 95

TABLE II: Maximum operating frequency of DOMMU for
different configurations measured post-synthesis on Virtex-5
FPGA.

RP0 DOMMU

BRAM Resources

Microblaze
Processor

FSL Wrapper

RP1

SysACE CF
Controller

HWICAP

FSL Bus

PLB Bus

PE 0
PE 1
PE 2
PE 3

Acronyms

DOMMU: Dynamic On-Chip
Memory Management Unit
RP: Reconfigurable Partition
PE: Processing Element
FSL: Fast Simplex Link
PLB: Processor Local Bus
BRAM: Block RAM
HWICAP: Hardware Internal
Configuration Access Port
SysACE CF: System Advanced
Configuration Environment
Compact Flash

Fig. 7: Overview of the implemented test system for DOMMU.

impact than the number of BRAM elements. This imposes
another cost constraint when configuring DOMMU: a trade-
off between the number of PE memory ports and the desired
operating frequency. The maximum operating frequency is
constrained by the critical path involved in BRAM access
which is the address mapping and interconnections establish-
ment via the crossbar switch, since it is constrained to occur in
single clock cycle to provide equivalence to traditional BRAM
access. The measured frequencies in table II are approximately
one quarter of the maximum frequency for traditional BRAM
access that can be achieved for -1 speed grade Virtex-5 FPGA,
which is 450 MHz. However, such clock frequencies are not
very often achieved for practical systems. This is due to logic
and wire delay, which often impose a critical path of a lower
operating frequency, not very different from those in table II.

Furthermore, the scalability of DOMMU is critically de-
termined by how the operating clock frequency varies with
its configuration. The distribution of BRAM resources across
the entire FPGA area and the need to enable access of
multiple PEs to all of the configured BRAM resources strongly
limits the maximum operating clock frequency that can be
achieved for DOMMU, which can hinder its scalability and
degrade performance. This can be tackled by imposing FPGA
placement constraints and fine-grained floorplanning to define
specific partition locations for the PEs, or grouping and cate-
gorizing BRAM resources according to their type and physical
proximity from the PE partitions, and assigning higher allo-
cation priority to closer BRAM elements. Another suggestion
would be limiting access and sharing of PE partitions to only
subsets of BRAM elements which are within a certain physical
proximity of each partition.

B. Test Platform

To demonstrate the functionality of DOMMU and its
impact on BRAM utilization, the system shown in Figure 7 is
implemented, which consists of two reconfigurable partitions
(RPs), each of which can host one or more PEs. An instance of
DOMMU is configured with the BRAM resources. Dynamic
partial reconfiguration of the reconfigurable partitions is con-
trolled by a Microblaze processor which communicates with
the reconfigurable partitions over a Fast Simplex Link (FSL)
[21] bus. A compact flash (CF) holds the partial bitstreams
required for reconfiguring each of the RPs, and the System
ACE CF controller [22] manages the transfer of data to the
FPGA. FPGA push buttons and DIP switches enable the user
to trigger reconfiguration of one of the RPs with one of the

possible PEs at any time. The Microblaze reads and processes
the user request, and accordingly reads the corresponding
partial BIT file from the CF. The BIT file is then written to
the Xilinx XPS Hardware Internal Configuration Access Port
IP (HWICAP IP) [23] to reconfigure the FPGA partitions.
The system was implemented on a Xilinx Virtex-5 LX110T
FPGA; but can be easily implemented on other FPGA devices,
since the HDL design code for DOMMU (BRAM elements
are HDL-inferred and not explicitly instantiated to support
portability) is vendor- and device- independent.

C. Case Study

A connected component labeling (CCL) algorithm [24]
[25] is used as the case study to evaluate the functionality of
DOMMU and to observe and compare performance, in terms
of BRAM utilization for specific memory access patterns,
between using DOMMU for managing the on-chip BRAM
resources and traditional static on-chip memory allocation.

CCL is an essential step in many image processing applica-
tions that labels all image pixels into independent components
depending on pixel connectivity, and computes features of
the image components such as the bounding box or the area
[5]. In the used architecture, the number of simultaneously
processed image components can vary from 0 up to the width
of the image [24] [25]. A proportional amount of run-time
memory is required to store these component labels and their
computed features. The two RPs in the test system shown in
Figure 7 are occupied by two parallel CCL PEs, and can be
reconfigured at run-time to be occupied with other PEs as
well. An input image is divided spatially into two slices, each
of which is processed by one of the PEs in parallel. Static
memory allocation would need to accomodate the worst-case
scenario for each of the CCL PEs is provided, which is costly
and inefficient. Therefore, this makes CCL a good case study
for adaptive memory management by DOMMU.

Measuring the improvement in BRAM allocation and uti-
lization definitively is not possible, since the improvement
achieved is context-dependent, i.e. for CCL it depends on the
input image, and in general, it depends on the memory access
pattern involved. Hence, improvement can only be measured
quantitatively for individual memory access patterns.

Figure 8 shows the memory requirements of the CCL
hardware architecture from [25] for two sample images: a bina-
rized photograph in 8a and random noise in 8b. The maximum
number of labels required is 4096 labels. This corresponds
to 200 kBit for the extraction of the bounding box of each
image component. Figure 8c shows that for processing the
photograph with DOMMU, only 3% of the worst-case memory
is actually required which corresponds to an improvement
in BRAM utilization by a factor of 33, and for the less-
probable-to-occur random noise image in 8b, only 25% is
required as shown in 8d, which corresponds to an improvement
in BRAM utilization by a factor of 4. For these scenarios,
the difference between the actually required memory and the
worst-case memory is made available by DOMMU for the
other PEs on the FPGA, while still retaining BRAM resources
to cover the worst-case scenarios. Moreover, it was also shown
using the test platform that DOMMU deallocates the BRAM
of the PE which gets reconfigured dynamically by another
PE (which is communicated by the Microblaze processor via
the FSL bus), and adapts the BRAM (de)allocations to the

BRAM requirements of the new PE. This demonstrates how
DOMMU adapts to the varying on-chip memory requirements
of dynamically reconfigurable FPGA architectures.

VI. CONCLUSION

In this paper, a Dynamic On-chip Memory Management
Unit (DOMMU) is proposed to support dynamic BRAM
sharing among several processing elements in FPGA-based
dynamic reconfigurable architectures, such that the BRAM
allocation and utilization adapt to the variable run-time mem-
ory footprints of the PEs. A dynamic fine-grain control of
BRAM (de)allocation, as opposed to previous static traditional
approaches is introduced, as well as a virtual BRAM address-
ing scheme, and an automated dynamic memory (de)allocation
algorithm, thus making DOMMU superior to previous archi-
tectures in terms of scalability, flexibility and its usability for
reconfigurable computing in particular. DOMMU was realized
on a Virtex-5 FPGA device, and its functionality was evaluated
using connected component labelling (CCL) as a case study
application. An improvement in BRAM utilization by a factor
of 4 was demonstrated when using DOMMU for managing the
on-chip memory requirements of CCL hardware architecture
when processing a random noise image, and a factor of 33 for
a more realistic image.

The work in this paper can be extended in different di-
rections. Exploring the alternative implementation approaches
for the crossbar switch presented originally in Section IV is
recommended, in order to reduce the logic resources con-
sumed. DOMMU needs to be more extensively tested with
more potential applications to assess its gains and performance
in a wider range of real life uncontrolled scenarios. The timing
performance needs to be more thoroughly analyzed, and differ-
ent measures and approaches to reduce the degradation of the
maximum operating clock frequency should be investigated,
as discussed in Section V.

ACKNOWLEDGMENTS

The authors would like to thank the German Research
Foundation (DFG) for the financial support for this work
carried out within Si 586 7/1 belonging to DFG-SPP 1423
and SI 587/11-1 belonging to DFG-SPP 1740.

REFERENCES

[1] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen slot
machine: A dynamically reconfigurable FPGA-based computer,” The
Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 47, no. 1, pp. 15–31, 2007.

[2] M. Platzner, J. Teich, and N. Wehn, Dynamically Reconfigurable
Systems: Architectures, Design Methods and Applications. Springer,
2010.

[3] S. Hauck and A. DeHon, Reconfigurable computing: the theory and
practice of FPGA-based computation. Morgan Kaufmann, 2010.

[4] I. Koutras, A. Bartzas, and D. Soudris, “Adaptive dynamic memory
allocators by estimating application workloads,” in 2012 International
Conference on Embedded Computer Systems (SAMOS). IEEE, 2012,
pp. 252–259.

[5] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the ACM (JACM), vol. 13, no. 4, pp. 471–494,
1966.

[6] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic stor-
age allocation: A survey and critical review,” in Memory Management.
Springer, 1995, pp. 1–116.

(a) Cathedral Cove, New Zealand. (b) Random image.

2800 3200 3600 4000
Image row

0

50

100

150

200

#
 U
se
d
La

be
ls

Slice 0
Slice 1
Sum(Slice 0, Slice 1)

(c) CCL memory requirements for Cathedral Cove image (a).

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Image row

0

200

400

600

800

1000

1200

1400

#
 U
se
d
La

be
ls

Slice 0
Slice 1
Sum(Slice 0, Slice 1)

(d) CCL memory requirements for random image (b).

Fig. 8: CCL memory requirements for 12 MegaPixel images (4096x3072).

[7] I. Puaut, “Real-time performance of dynamic memory allocation algo-
rithms,” in 14th Euromicro Conference on Real-Time Systems, 2002.
IEEE, 2002, pp. 41–49.

[8] Rtems real time operating system (RTOS). [Online]. Available:
http://www.rtems.org/

[9] D. Atienza, S. Mamagkakis, F. Catthoor, J. Mendias, and D. Soudris,
“Reducing memory accesses with a system-level design methodology
in customized dynamic memory management,” in 2nd Workshop on
Embedded Systems for Real-Time Multimedia (ESTImedia), Sept 2004,
pp. 93–98.

[10] M. Shalan and V. J. Mooney, “A dynamic memory management unit
for embedded real-time system-on-a-chip,” in International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, 2000,
vol. 17, no. 19, 2000, pp. 180–186.

[11] J. M. Chang and E. F. Gehringer, “A high performance memory allocator
for object-oriented systems,” IEEE Transactions on Computers, vol. 45,
no. 3, pp. 357–366, 1996.

[12] D. Goehringer, L. Meder, M. Hubner, and J. Becker, “Adaptive multi-
client network-on-chip memory,” in 2011 International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2011, pp. 7–12.

[13] I. Anagnostopoulos, S. Xydis, A. Bartzas, Z. Lu, D. Soudris, and
A. Jantsch, “Custom microcoded dynamic memory management for
distributed on-chip memory organizations,” IEEE Embedded Systems
Letters, vol. 3, no. 2, pp. 66–69, 2011.

[14] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Exploration of
distributed shared memory architectures for noc-based multiprocessors,”
Journal of Systems Architecture, vol. 53, no. 10, pp. 719–732, 2007.

[15] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,

“Hoard: A scalable memory allocator for multithreaded applications,”
ACM SIGPLAN Notices, vol. 35, no. 11, pp. 117–128, 2000.

[16] M. Gries, “Methods for evaluating and covering the design space during
early design development,” Integrated VLSI Journal, vol. 38, no. 2, pp.
131–183, Dec. 2004.

[17] W. Stallings, Operating Systems: Internals and Design Principles.
Pearson/Prentice Hall, 2008.

[18] “Virtex-5 FPGA Configuration User Guide,” Xilinx, Inc., Oct 2012.
[19] C. H. Hoo and A. Kumar, “An area-efficient partially reconfigurable

crossbar switch with low reconfiguration delay,” in 22nd 2012 Inter-
national Conference on Field Programmable Logic and Applications
(FPL), Aug 2012, pp. 400–406.

[20] “LogiCORE IP Block Memory Generator v6.1,” Xilinx, Inc., Mar. 2011.
[21] “LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c),” Xilinx,

Inc., April 2010.
[22] “System ACE CompactFlash Solution,” Xilinx, Inc., April 2002.
[23] “LogiCORE IP XPS HWICAP(v5.00a),” Xilinx, Inc., July 2010.
[24] M. Klaiber, L. Rockstroh, Z. Wang, Y. Baroud, and S. Simon, “A

memory-efficient parallel single pass architecture for connected com-
ponent labeling of streamed images,” in 2012 International Conference
on Field-Programmable Technology (FPT), 2012, pp. 159–165.

[25] M. J. Klaiber, D. G. Bailey, S. Ahmed, Y. Baroud, and S. Simon, “A
high-throughput FPGA architecture for parallel connected components
analysis based on label reuse,” in 2013 International Conference on
Field-Programmable Technology (FPT), Dec 2013, pp. 302–305.

